Rozpoznawanie szeregów geometrycznych zbieżnych - matura-rozszerzona - Baza Wiedzy

Rozpoznawanie szeregów geometrycznych zbieżnych

Teraz, gdy już nauczyliśmy się liczyć granice różnych ciągów, możemy zająć się szeregami. Po wyjaśnieniu co to w ogóle jest przejdziemy do pytania, czy dany szereg jest zbieżny - i jeśli jest, to policzymy jego sumę.

Przed przejściem do rozwiązywania zadań trzeba wprowadzić trochę teorii:

Załóżmy, że mamy dany ciąg liczbowy $$(a_n)$$.
$$N$$-tą sumą częściową będziemy nazywali liczbę równą $$a_1+a_2+..+a_n = sum_1^n a_i$$.

Szeregiem nazwiemy ciąg, którego wyrazami są kolejne sumy częściowe, tzn:

$$S_0 = a_0$$
$$S_1 = a_0 + a_1$$
$$S_2 = a_0 + a_1+a_2$$
$$S_2 = a_0 + a_1+a_2+a_3$$
$$S_2 = a_0 + a_1+a_2+a_3+a_4$$

i tak dalej.

Sumę szeregu oznaczymy jako $$sum_1^{∞} a_i$$. Jeżeli ta suma istnieje (tzn. nie jest "nieskończona"), nazywamy ją zwykle $$S$$ i jest ona równa $$lim↙{n → ∞} S_n$$.

W tym rozdziale będziemy zajmowali się jedynie szeregami geometrycznymi, które dzięki dość prostej strukturze można dość łatwo przekształcać, ustalać, czy są zbieżne i liczyć ich sumy.

Szereg geometryczny to nic innego jak zwykły szereg (opisany powyżej), tyle tylko, że ciąg $$(a_n)$$ jest ciągiem geometrycznym. Szereg wygląda więc w ten sposób:
$$sum_1^{∞} S_i = a + qa + q^2a + q^3a ...$$

Z ciągami geometrycznymi spotkaliśmy się już wcześniej, więc jasne jest, jak powstają: kolejny wyraz jest po prostu poprzednim przemnożonym przez współczynnik $$q$$.

Przykładem takiego ciągu może być na przykład:
$$a_n = ({1}/{2})^n$$

Podajmy kilka jego pierwszych wyrazów:
$$a_0 = ({1}/{2})^0 = 1$$
$$a_1 = ({1}/{2})^1 = {1}/{2}$$
$$a_2 = ({1}/{2})^2 = {1}/{4}$$
$$a_3 = ({1}/{2})^3 = {1}/{8}$$

Jego sumy częściowe będą więc równe:
$$S_0 = 1$$
$$S_1 = 1 + {1}/{2}$$
$$S_2 = 1 + {1}/{2} + {1}/{4}$$
$$S_3 = 1 + {1}/{2} + {1}/{4} + {1}/{8}$$
$$S_4 = 1 + {1}/{2} + {1}/{4} + {1}/{8} + {1}/{16}$$

Skoro wiemy już, czym jest szereg geometryczny, pozostaje odpowiedzieć na pytanie: kiedy jest on zbieżny? Warunek jest prosty: wtedy, kiedy wartość bezwzględna ilorazu $$q$$ jest < 1. Jest to raczej logiczne: jeśli byłaby większa, to każdy następny składnik byłby większy, więc suma mogłaby być nieskończenie duża.

Pozostało jedynie przedstawić wzór na sumę takiego szeregu. Jak pamiętamy z rozdziału o ciągach geometrycznych ich suma wynosiła $$S = a{1-q^n}/{1-q}$$. Tutaj, ponieważ przechodzimy po prostu przez granicę n dążącego do nieskończonośći a $$|q|$$ < $$1$$, to oczywiście $$lim↙{n → ∞} q^n = 0$$ .
(Każdy kolejny wyraz jest $$q$$ razy mniejszy). We wzorze na sumę znika nam więc składnik $$q^n$$ i otrzymujemy:

$$S = {1}/{1-q}$$

Nasz przykładowy ciąg $$a_n$$ ma więc sumę równą:
$$S = {1}/{1-{1}/{2} } = 2$$

Ciekawostka: zagadnienie skończonej sumy nieskończonego ciągu było jednym z największych problemów matematyki starożytnej Grecji - istnieje znany paradoks żółwia i Achillesa mówiący o tym zagadnieniu. Aby przekonać się, że suma rzeczywiście jest skonczona, można to sprawdzić na rysunku:

4

Spis treści

Rozwiązane zadania
Dane są wielomiany

`a)`

Wielomian stopnia trzeciego to taki, w którym najwyższa potęga x to 3. 

Ten wielomian to to v(x)

 

`v(x)=x^3-6x^2+4`

`a_3=1`

`a_2=-6`

`a_1=0`

`a_0=4`

 

 

`b)`

Wielomian stopnia piątego to taki, w którym najwyższa potęga x to 5. 

Ten wielomian to w(x). 

`w(x)=-1/6x^5+1/4x^4-1/3x^3+1/2x-1`

`a_5=-1/6`

`a_4=1/4`

`a_3=-1/3`

`a_2=0`

`a_1=1/2`

`a_0=-1`

 

`a_5+a_4+a_3+a_2+a_1+a_0=-1/6+1/4-1/3+0+1/2-1=`

`=-2/12+3/12-4/12+6/12-12/12=-9/12=-3/4`

Rozwiąż układy równań metodą przeciwnych współczynników

`a)`

`{(-3x+2y=-7\ \ \ |*(-1)), (5x+2y=1):}`

`{(3x-2y=7), (5x+2y=1):}\ \ \ |+`

`{(8x=8\ \ |:8), (5x+2y=1):}`

`{(x=1), (5*1+2y=1\ \ |-5):}`

`{(x=1), (2y=-4\ \ |:2):}`

`{(x=1), (y=-2):}`

 

 

`b)`

`{((7x-3y)/5=(5x-y)/3-(x+y)/2\ \ \ |*30), (3(x-1)=5(y+1)):}`

`{(6(7x-3y)=10(5x-y)-15(x+y)), (3x-3=5y+5\ \ |-5y+3):}`

`{(42x-18y=50x-10y-15x-15y), (3x-5y=8):}`

`{(42x-18y=35x-25y\ \ \ |-35x+25y), (3x-5y=8):}`

`{(7x+7y=0\ \ |:7), (3x-5y=8):}`

`{(x+y=0\ \ \ |*(-3)), (3x-5y=8):}`

`{(-3x-3y=0), (3x-5y=8):}\ \ \ |+`

`{(-8y=8\ \ |:(-8)), (-3x-3y=0):}`

`{(y=-1), (-3x-3*(-1)=0):}`

`{(y=-1), (-3x+3=0\ \ \ |+3x):}`

`{(y=-1), (3x=3\ \ |:3):}`

`{(y=-1), (x=1):}`

 

 

 

 

`c)`

`{(2x-3y-1=(x-5y)/2-1/2\ \ \ |*2), (1 3/4y-1/4x=(3y)/2+1/4\ \ \ |*4):}`

`{(4x-6y-2=x-5y-1\ \ \ |-x+5y+2), (7y-x=6y+1\ \ |-6y):}`

`{(3x-y=1), (y-x=1):}`

`{(3x-y=1), (-x+y=1):}\ \ \ |+`

`{(2x=2\ \ |:2), (-x+y=1\ \ |+x):}`

`{(x=1), (y=1+x=1+1=2):}`

 

 

 

`d)`

`{((x-4)(x+4)=(x+2)^2-y), ((2x-y)/2-(x-y)/3=1\ \ \ |*6):}`

`{(x^2-16=x^2+4x+4-y\ \ |-x^2), (3(2x-y)-2(x-y)=6):}`

`{(-16=4x+4-y\ \ |-4), (6x-3y-2x+2y=6):}`

`{(-20=4x-y), (4x-y=6):}`

`{(4x-y=-20\ \ |*(-1)), (4x-y=6):}`

`{(-4x+y=20), (4x-y=6):}\ \ \ |+`

`{(0=26), (4x-y=6):}`

Układ jest sprzeczny - nie ma rozwiązań.    

     

` `

 

 

Rozłóż wielomian w na czynniki

`a)`

`w(x)=(20x^3-28x^2+8x)(x^4+6x^3+2x^2+12x)=`

`\ \ \ \ \ \ \ =(4x(5x^2-7x+2))*(x^4+2x^2+6x^3+12x)=`

`\ \ \ \ \ \ \ =(4x(5x^2-7x+2))*(x^2(x^2+2)+6x(x^2+2))=`

`\ \ \ \ \ \ \ =(4x(5x^2-7x+2))*(#((x^2+2))^(Delta=0-8<0)(x^2+6x))=`

`\ \ \ \ \ \ \ =4x#(ul(ul((5x^2-7x+2))))^((**))(x^2+2)(x+6)x=...`

  

 

`\ \ \ \ \ \ \ \ \ (**)`

`\ \ \ \ \ \ \ \ \ Delta=(-7)^2-4*5*2=49-40=9`

`\ \ \ \ \ \ \ \ \ \ sqrtDelta=3`

`\ \ \ \ \ \ \ \ \ x_1=(7-3)/(2*5)=4/10=2/5`

`\ \ \ \ \ \ \ \ \ x_2=(7+3)/(2*5)=10/10=1`

 

 

`\ \ ...=4x*5(x-2/5)(x-1)(x^2+2)(x+6)x=`

`\ \ \ \ \ \ =20x^2(x-2/5)(x-1)(x+6)(x^2+2)`

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )`

 

 

 

 

 

`b)`

`w(x)=#((-1/4x^4-2x^3-4x^2))^a#((x^3-7x^2-4x+28))^b=...`

 

 

`\ \ \ \ \ \ \ a=-1/4x^4-2x^3-4x^2=-1/4x^2(x^2+8x+16)=-1/4x^2(x+4)^2`

`\ \ \ \ \ \ \ b=x^3-7x^2-4x+28=x^2(x-7)-4(x-7)=(x-7)(x^2-4)=(x-7)(x-2)(x+2)`

 

 

`...=-1/4x^2(x+4)^2(x-7)(x-2)(x+2)`

 `overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

 

 

`c)`

`w(x)=#((7x^4+14x^3-21x^2))^a#((x^5-4x^3-x^2+4))^b=...`

 

 

`\ \ \ \ \ \ \ a=7x^4+14x^3-21x^2=7x^2(x^2+2x-3)=7x^2(x+3)(x-1)`

`\ \ \ \ \ \ \ \ \ \ \ \ \ Delta=2^2-4*1*(-3)=4+12=16`

`\ \ \ \ \ \ \ \ \ \ \ \ \ sqrtDelta=4`

`\ \ \ \ \ \ \ \ \ \ \ \ \ x_1=(-2-4)/2=-6/2=-3`

`\ \ \ \ \ \ \ \ \ \ \ \ \ x_2=(-2+4)/2=2/2=1`

 

`\ \ \ \ \ \ \ b=x^5-4x^3-x^2+4=x^3(x^2-4)-1(x^2-4)=(x^2-4)(x^3-1)=`

`\ \ \ \ \ \ \ \ \ =(x-2)(x+2)(x-1)#((x^2+x+1))^(Delta=1-4<0)`

 

 

`...=7x^2(x+3)(x-1)(x-2)(x+2)(x-1)(x^2+x+1)=`

`\ \ \ \ \ =7x^2(x-2)(x-1)^2(x+2)(x+3)(x^2+x+1)`

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )`

 

 

 

 

 

`d)`

`w(x)=#((3x^4-2x^3+1/3x^2))^a#((x^6-1))^b=...`

 

`\ \ \ \ \ \ \ \ \ a=3x^4-2x^3+1/3x^2=1/3x^2(9x^2-6x+1)=1/3x^2(3x-1)^2`

`\ \ \ \ \ \ \ \ \ b=x^6-1=(x^2)^3-1^3=(x^2-1)(x^4+x^2+1)=(x-1)(x+1)(x^4+x^2+1)=`

`\ \ \ \ \ \ \ \ \ \ \ =(x-1)(x+1)(ul(ul(x^4+2x^2+1))-x^2)=(x-1)(x+1)((x^2+1)^2-x^2)=`

`\ \ \ \ \ \ \ \ \ \ \ =(x-1)(x+1)#((x^2+1-x))^(Delta=1-4<0)#((x^2+1+x))^(Delta=1-4<0)`

 

 

`...=1/3x^2(3x-1)^2(x-1)(x+1)(x^2-x+1)(x^2+x+1)`

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )`

Oblicz

`a)\ (-2)^5=-32`

`\ \ \ (-2)^(-5)=1/(-2)^5=-1/32`

`\ \ \ 2^-5=1/2^5=1/32`

 

`b)\ (1/3)^-2=3^2=9`

`\ \ \ (-1/3)^-2=(-3)^2=9`

`\ \ \ (-1/3)^-3=(-3)^-3=-27`

 

`c)\ (sqrt3)^4=3^2=9`

`\ \ \ (sqrt3)^-2=1/(sqrt3)^2=1/3`

`\ \ \ (sqrt3)^-6=1/(sqrt3)^6=1/3^3=1/27`

 

`d)\ (sqrt2)^6=2^3=8`

`\ \ \ (sqrt2)^7=(sqrt2)^6*sqrt2=2^3*sqrt2=8sqrt2`

`\ \ \ (sqrt2)^-8=1/(sqrt2)^8=1/2^4=1/16`

Podaj odpowiednie założenia i wykonaj działanie

`a)`

`{(xne0), (2xne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ => \ \ \ D=RR\\{0}`

 

`6/x+5/(2x)=12/(2x)+5/(2x)=17/(2x)`

 

 

 

`b)`

`{(3xne0), (4xne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`4/(3x)-3/(4x)=16/(12x)-9/(12x)=7/(12x)`

 

 

`c)`

`{(x-2ne0), (2x-4ne0):}\ \ \ =>\ \ \ {(xne2), (xne2):}\ \ \ =>\ \ \ D=RR\\{2}`

 

`3/(x-2)+x/(2x-4)=6/(2x-4)+x/(2x-4)=(6+x)/(2x-4)`

 

 

 

`d)`

`{(3x+3ne0), (x+1ne0):} \ \ \ =>\ \ \ {(xne-1), (xne -1):}\ \ \ =>\ \ \ D=RR\\{-1}`

 

`x/(3x+3)-1/(x+1)=x/(3x+3)-3/(3x+3)=(x-3)/(3x+3)`

 

 

`e)`

`{(x-3ne0), (4x-12ne0):}\ \ \ =>\ \ \ {(xne3), (xne3):}\ \ \ =>\ \ \ D=RR\\{3}`

 

`(x+1)/(x-3)+(2x-5)/(4x-12)=(4x+4)/(4x-12)+(2x-5)/(4x-12)=(4x+4+2x-5)/(4x-12)=(6x-1)/(4x-12)`

 

 

`f)`

`{(3x+6ne0), (x+2ne0):}\ \ \ =>\ \ \ {(xne-2), (xne-2):}\ \ \ =>\ \ \ D=RR\\{-2}`

 

`(2x-1)/(3x+6)-(x-1)/(x+2)=(2x-1)/(3x+6)-(3x-3)/(3x+6)=((2x-1)-(3x-3))/(3x+6)=(2x-1-3x+3)/(3x+6)=(-x+2)/(3x+6)`

Podaj odpowiednie założenia i wykonaj dzielenie

`a)`

`{(4xne0), (2x^2ne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`3/(4x):1/(2x^2)=3/(4strikex)*2x^strike2=(6x)/4=(3x)/2`

 

`x=-1/2inD\ \ \ =>\ \ \ (3x)/2=(3*(-1/2)):2=-3/2*1/2=-3/4`

 

 

 

`b)`

`{(5x^2ne0), (10xne0):} \ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`6/(5x^2):3/(10x)=strike6^2/(5x^2)*(10x)/strike3^1=(20x)/(5x^2)=4/x`

 

`x=-1/2inD\ \ \ =>\ \ \ 4/x=4/(-1/2)=4:(-1/2)=4*(-2)=-8`

 

 

 

 

`c)`

`{(x^2ne0), (xne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`(4x+2)/(x^2):2/x=(strike2*(2x+1))/(x^2)*x/strike2^1=((2x+1)*x)/x^2=(2x+1)/x`

 

`x=-1/2inD\ \ \ =>\ \ \ (2x+1)/(x)=(2*(-1/2)+1)/(-1/2)=0`

 

 

 

`d)`

`{(xne0), (x^2ne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`(6x-9)/x:3/x^2=(strike3*(2x-3))/x*x^2/strike3^1=((2x-3)*x^2)/x=(2x-3)x`

 

 

`x=-1/2inD\ \ \ =>\ \ \ (2x-3)*x=(2*(-1/2)-3)*(-1/2)=(-1-3)*(-1/2)=(-4)*(-1/2)=2`

 

 

 

`e)`

`{(x-4ne0), (2x-8ne0):}\ \ \ =>\ \ \ {(xne4), (xne4):}\ \ \ =>\ \ \ D=RR\\{4}`

 

`x/(x-4):3/(2x-8)=x/strike(x-4)*(2*strike((x-4)))/3=(2x)/3`

 

`x=-1/2inD\ \ \ =>\ \ \ (2x)/3=(2*(-1/2))/3=-1/3`

 

 

 

`f)`

`{(3x-1ne0), (2-6xne0):}\ \ \ =>\ \ \ {(xne1/3), (xne2/6):}\ \ \ =>\ \ \ D=RR\\{1/3}`

 

`(20x)/(3x-1):5/(2-6x)=(strike20^4x)/strike(3x-1)*(-2*strike((3x-1)))/strike5^1=-8x`

 

`x=-1/2inD\ \ \ =>\ \ \ -8x=-8*(-1/2)=4`

          

Podaj odpowiednie założenia i wykonaj działanie

`a)`

`x-2ne0\ \ \ =>\ \ \ x ne2\ \ \ =>\ \ \ D=RR\\{2}`

 

`x/(x-2)+(2-2x)/(x-2)=(x+2-2x)/(x-2)=(-x+2)/(x-2)=((-1)*(x-2))/(x-2)=-1`

 

 

 

`b)`

`{(2x-1ne0), (1-2xne0):}\ \ \ =>\ \ \ {(xne1/2), (xne1/2):}\ \ \ =>\ \ \ D=RR\\{1/2}`

  

`(x+3)/(2x-1)+(3x+1)/(1-2x)=(x+3)/(2x-1)+(3x+1)/((-1)*(2x-1))=(x+3)/(2x-1)+(-3x-1)/(2x-1)=(x+3-3x-1)/(2x-1)=(-2x+2)/(2x-1)`

 

 

`c)`

`{(x+4ne0), (2x+8ne0):}\ \ \ =>\ \ \ {(xne-4),(xne-4):}\ \ \ =>\ \ \ D=RR\\{-4}`

 

`(-x)/(x+4)-(3-x)/(2x+8)=(-2x)/(2x+8)-(3-x)/(2x+8)=(-2x-(3-x))/(2x+8)=(-2x-3+x)/(2x+8)=(-x-3)/(2x+8)`

 

 

 

`d)`

`{(2-3xne0), (6x-4ne0):}\ \ \ =>\ \ \ {(xne2/3), (xne4/6):}\ \ \ =>\ \ \ D=RR\\{2/3}`

 

`2/(2-3x)-(1+x)/(6x-4)=(-4)/(6x-4)-(1+x)/(6x-4)=(-4-(1+x))/(6x-4)=(-4-1-x)/(6x-4)=(-x-5)/(6x-4)`

 

 

`e)`

`{(2x+4ne0), (3x+6ne0):}\ \ \ =>\ \ \ {(xne-2), (xne-2):}\ \ \ =>\ \ \ D=RR\\{-2}`

 

`(x-1)/(2x+4)+(x+7)/(3x+6)=(3x-3)/(6x+12)+(2x+14)/(6x+12)=(3x-3+2x+14)/(6x+12)=(5x+11)/(6x+12)`

 

 

`f)`

`{(10x-15ne0), (2x-3ne0):}\ \ \ =>\ \ \ {(xne 15/10), (xne3/2):}\ \ \ =>\ \ \ D=RR\\{3/2}`

 

`(2x)/(10x-15)-(x-2)/(2x-3)=(2x)/(10x-15)-(5x-10)/(10x-15)=(2x-(5x-10))/(10x-15)=(2x-5x+10)/(10x-15)=(-3x+10)/(10x-15)`

 

Klub zrzeszający dwunastu hodowców gołębi

Wiemy, że średnia ilość gołębi to 50. Liczba członków klubu wynosi 12. Oznacza to, że po dodaniu ilości gołębi pierwszego, drugiego, ..., dwunastego członka i podzieleniu otrzymanej sumy przez 12 otrzymano 50. 

`(x_1+x_2+...+x_12)/12=50` 

 

Jeśli więc pomnożymy 50 razy 12 to otrzymamy sumę liczby wszystkich gołębi tych hodowców (na początku):

`x_1+x_2+...+x_12=50*12` 

`x_1+x_2+...+x_12=600` 

 

Wiemy, że na początku było 600 gołębi.

Jeden z hodowców sprzedał połowę swoich gołębi i zostało mu 36 gołębi. Jeśli sprzedał połowę, to musiał sprzedać tyle samo, ile mu zostało, a więc 36. Liczba wszystkich gołębi zmniejszyła się więc o 36. Liczba hodowców nie zmieniła się (nadal jest równa 12). Możemy obliczyć, ile gołębi przypada teraz średnio na jednego hodowcę:

`(600-36)/12=600/12-36/12=50-3=47`   

Oblicz

`a)\ (1+sqrt2)^2+(1-sqrt2)^2=(1+2sqrt2+2)+(1-2sqrt2+2)=`

`\ \ \ =(3+2sqrt2)+(3-2sqrt2)=3+2sqrt2+3-2sqrt2=6`

 

 

`b)\ (sqrt3-1)^2-(2-sqrt3)^2=(3-2sqrt3+1)-(4-4sqrt3+3)=`

`\ \ \ =(4-2sqrt3)-(7-4sqrt3)=4-2sqrt3-7+4sqrt3=2sqrt3-3`

 

`c)\ (2sqrt3-3/2)^2-(2sqrt3+3/2)^2=[(2sqrt3-3/2)-(2sqrt3+3/2)]*[(2sqrt3-3/2)+(2sqrt3+3/2)]=`

`\ \ \ =[2sqrt3-3/2-2sqrt3-3/2]*[2sqrt3-3/2+2sqrt3+3/2]=-6/2*4sqrt3=-3*4sqrt3=-12sqrt3`

 

`d)\ (4-sqrt5)(4+sqrt5)-(sqrt5-2)(2+sqrt5)=4^2-sqrt5^2-(sqrt5-2)(sqrt5+2)=`

`\ \ \ =16-5-(sqrt5^2-2^2)=11-(5-4)=11-1=10`

 

`e)\ (sqrt6-sqrt5)(sqrt6+sqrt5)+(sqrt6-sqrt5)^2=(sqrt6^2-sqrt5^2)+(6-2sqrt6*sqrt5+5)=`

`\ \ \ =(6-5)+(11-2sqrt30)=1+11-2sqrt30=12-2sqrt30`

 

`f)\ (2sqrt5-sqrt10)^2-(2sqrt5+1)(1-2sqrt5)=(4*5-4sqrt5*sqrt10+10)-(1+2sqrt5)(1-2sqrt5)=`

`\ \ \ =20-4sqrt50+10-(1^2-(2sqrt5)^2)=30-4sqrt50-(1-4*5)=`

`\ \ \ =30-4*sqrt25*sqrt2-1+20=30-4*5*sqrt2+19=49-20sqrt2`

 

Oblicz pole zacieniowanej figury. a) |AB|=2, |BC|=1

a)

Pole zacieniowanej figury to różnica pól dużego i małego koła.

`P=P_1-P_2`

Promień dużego koła:

`R=|AC|=2+1=3`

Pole tego koła:

`P_1=piR^2=pi3^2=9pi`

Promień małego koła:

`r=|AB|:2=2:2=1`

Pole małego koła:

`P_2=pir^2=1pi`

 

Pole zacieniowanej figury:

`P=9pi-1pi=ul(ul(8pi))`

 

b)

Pole zacieniowanej figury to różnica pól dużego koła i sumy pól dwóch mniejszych kół (2 małe koła mają takiej samej długości promień, więc można obliczyć pole jednego z nich i podwoić je).

P=P_1-2*P_2

Promień dużego koła:

`R=|AB|=3`

Pole tego koła:

`P_1=piR^2=pi3^2=9pi`

Promień małego koła:

`r=|AB|:2=3:2=1,5`

Pole małego koła:

`P_2=pir^2=(1 1/2)^2pi= (3/2)^2pi=9/4pi`

`P=P_1-P_2=9pi-strike2*9/(strike4)pi=9pi-9/2pi=9pi-4 1/2pi=ul(ul(4 1/2pi))`

 

c)

Pole zacieniowanej części to różnica pól trójkąta równobocznego i sumy trzech wycinków koła.

`P=P_1-3P_2`

`P_1=(a^2sqrt3)/4=(6^2sqrt3)/4=(36sqrt3)/4=ul(9sqrt3)`

Wycinki koła są wyznaczone przez kąt będący kątem wewnętrznym trójkąta równobocznego, zatem przez kąt 60o.

Promień tych wycinków:

`r=|AB|:2=6:2=3`

Pole trzech wycinków koła:

`P_2=3* 60^o/360^o* pi3^2=3*1/6*9pi=ul(4 1/2 pi)`

`P=ul(ul(9sqrt3-4 1/2 pi))`