Rozpoznawanie szeregów geometrycznych zbieżnych - matura-rozszerzona - Baza Wiedzy - Odrabiamy.pl

Rozpoznawanie szeregów geometrycznych zbieżnych - matura-rozszerzona - Baza Wiedzy

Rozpoznawanie szeregów geometrycznych zbieżnych

Teraz, gdy już nauczyliśmy się liczyć granice różnych ciągów, możemy zająć się szeregami. Po wyjaśnieniu co to w ogóle jest przejdziemy do pytania, czy dany szereg jest zbieżny - i jeśli jest, to policzymy jego sumę.

Przed przejściem do rozwiązywania zadań trzeba wprowadzić trochę teorii:

Załóżmy, że mamy dany ciąg liczbowy $(a_n)$.
$N$-tą sumą częściową będziemy nazywali liczbę równą $a_1+a_2+..+a_n = sum_1^n a_i$.

Szeregiem nazwiemy ciąg, którego wyrazami są kolejne sumy częściowe, tzn:

$S_0 = a_0$
$S_1 = a_0 + a_1$
$S_2 = a_0 + a_1+a_2$
$S_2 = a_0 + a_1+a_2+a_3$
$S_2 = a_0 + a_1+a_2+a_3+a_4$

i tak dalej.

Sumę szeregu oznaczymy jako $sum_1^{∞} a_i$. Jeżeli ta suma istnieje (tzn. nie jest "nieskończona"), nazywamy ją zwykle $S$ i jest ona równa $lim↙{n → ∞} S_n$.

W tym rozdziale będziemy zajmowali się jedynie szeregami geometrycznymi, które dzięki dość prostej strukturze można dość łatwo przekształcać, ustalać, czy są zbieżne i liczyć ich sumy.

Szereg geometryczny to nic innego jak zwykły szereg (opisany powyżej), tyle tylko, że ciąg $(a_n)$ jest ciągiem geometrycznym. Szereg wygląda więc w ten sposób:
$sum_1^{∞} S_i = a + qa + q^2a + q^3a ...$

Z ciągami geometrycznymi spotkaliśmy się już wcześniej, więc jasne jest, jak powstają: kolejny wyraz jest po prostu poprzednim przemnożonym przez współczynnik $q$.

Przykładem takiego ciągu może być na przykład:
$a_n = ({1}/{2})^n$

Podajmy kilka jego pierwszych wyrazów:
$a_0 = ({1}/{2})^0 = 1$
$a_1 = ({1}/{2})^1 = {1}/{2}$
$a_2 = ({1}/{2})^2 = {1}/{4}$
$a_3 = ({1}/{2})^3 = {1}/{8}$

Jego sumy częściowe będą więc równe:
$S_0 = 1$
$S_1 = 1 + {1}/{2}$
$S_2 = 1 + {1}/{2} + {1}/{4}$
$S_3 = 1 + {1}/{2} + {1}/{4} + {1}/{8}$
$S_4 = 1 + {1}/{2} + {1}/{4} + {1}/{8} + {1}/{16}$

Skoro wiemy już, czym jest szereg geometryczny, pozostaje odpowiedzieć na pytanie: kiedy jest on zbieżny? Warunek jest prosty: wtedy, kiedy wartość bezwzględna ilorazu $q$ jest < 1. Jest to raczej logiczne: jeśli byłaby większa, to każdy następny składnik byłby większy, więc suma mogłaby być nieskończenie duża.

Pozostało jedynie przedstawić wzór na sumę takiego szeregu. Jak pamiętamy z rozdziału o ciągach geometrycznych ich suma wynosiła $S = a{1-q^n}/{1-q}$. Tutaj, ponieważ przechodzimy po prostu przez granicę n dążącego do nieskończonośći a $|q|$ < $1$, to oczywiście $lim↙{n → ∞} q^n = 0$ .
(Każdy kolejny wyraz jest $q$ razy mniejszy). We wzorze na sumę znika nam więc składnik $q^n$ i otrzymujemy:

$S = {1}/{1-q}$

Nasz przykładowy ciąg $a_n$ ma więc sumę równą:
$S = {1}/{1-{1}/{2} } = 2$

Ciekawostka: zagadnienie skończonej sumy nieskończonego ciągu było jednym z największych problemów matematyki starożytnej Grecji - istnieje znany paradoks żółwia i Achillesa mówiący o tym zagadnieniu. Aby przekonać się, że suma rzeczywiście jest skonczona, można to sprawdzić na rysunku:

4

Spis treści

Rozwiązane zadania
Liczba a jest pierwiastkiem

 

Jeśli liczba 2 jest pierwiastkiem wielomianu w, to wielomian w jest podzielny przez dwumian x-2. Wykonajmy dzielenie pisemne:

 

 

Możemy więc zapisać wielomian w w następującej postaci:

 

 

{premium}   

 

 

 

 

Jeśli liczba 6 jest pierwiastkiem wielomianu w, to wielomian w jest podzielny przez dwumian x-6. Wykonajmy dzielenie pisemne:

 

Możemy więc zapisać wielomian w w następującej postaci:

 

Czynnik kwadratowy ma ujemną deltę, więc wielomian nie ma innych pierwiastków.

 

 

 

 

Oczywiście możemy wykonać dzielenie pisemne, jak w poprzednich podpunktach, ale zauważmy, że wielomian w można łatwo przedstawić w postaci iloczynowej (przydatny będzie wzór skróconego mnóżenia na różnicę sześcianów). 

  

 

 

 

 

 

 

 

 

 

Jeśli liczba -5 jest pierwiastkiem wielomianu w, to wielomian w jest podzielny przez dwumian x+5. Wykonajmy dzielenie pisemne:

 

Możemy więc zapisać wielomian w w następującej postaci:

 

 

 

  

Na diagramie kołowym przedstawiono ...

Suma miar kątów środkowych na tym diagramie wynosi 360o. Zatem: {premium}

  


Zdarzenie A polega na wylosowaniu buku. 

Obliczamy ile wynosi miara kąta środkowego odpowiadającego tej odpowiedzi. 

 

Zatem: 

 


Obliczamy ile wynosi prawdopodobieństwo zdarzenia A. 

 

Przyjmijmy, że ciąg ...

Na pewno rosnące są ciągi:

 

 {premium}

 


Ciąg (cn) będzie malejący (bo ciąg (an) jest rosnący).

Na przykład:

 

 


Ciąg (dn) nie musi być rosnący.

Na przykład:

 

 

Wypiszmy kilka początkowych wyrazów tego ciągu:

 

 

 

Ciąg (dn) nie jest ani rosnący, ani malejący.

Wykaż, że jeśli...

 

 

 

 {premium}

 

A więc:

 

Za 16 biletów do cyrku zapłacono 303 zł

{premium}

 

 

Oblicz f(-2), f(0)...

        {premium}

 

 



 

 

 


 

 

 

Rozwiąż nierówność.

 

 

 

 

 

 

 

 

 

 

  

 

  

 
 

 

 

 

 

 

 

 

 

  

    

 

 

 

 

{premium}  

 

 

 

   

 

 

 

        

 

 

 

 

 

 

 

       

  

 

 

 

 

 

    

 

 

 

 

 

        

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

    

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Ze zbioru {1, 2, 3, ..., 11}

Mamy 11 liczb - 6 liczb nieparzystych (1, 3, 5, 7, 9, 11) oraz 5 liczb parzystych (2, 4, 6, 8, 10). 

Obliczmy, na ile sposobów można wybrać 2 z 11 liczb:

 

 

Obliczmy, na ile sposobów można wybrać 2 z 6 liczb nieparzystych:

{premium}  

 

 

Obliczmy, na ile sposobów można wybrać parę złożoną z liczby parzystej i nieparzystej:

 

 

Obliczmy, na ile sposobów można wybrać 2 z 5 liczb parzystych:

 

 

Obliczamy prawdopodobieństwa, które zapiszemy na gałęziach drzewka:

 

 

  

 

Rysujemy drzewko i zapisujemy na gałęziach odpowiednie prawdopodobieństwa.

  

 

 

 



 

 

  

Określ monotoniczność funkcji

 

 

{premium}  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wyznacz przybliżone rozwiązanie ...

 

 

 

 

 

 

{premium}