Przedziały monotoniczności - matura-rozszerzona - Baza Wiedzy

Przedziały monotoniczności

Skoro pochodna funkcji mówi o tym, czy funkcja rośnie, czy maleje, to można na jej podstawie powiedzieć, w jakich przedziałach funkcja jest monotoniczna. Zasada jest oczywista: jeśli pochodna jest dodatnia, to funkcja rośnie - jeśli ujemna, maleje.

Zobaczmy to na przykładzie funkcji
$$f(x) = x^3 + 2x^2 - 3x + 1$$

Na pierwszy rzut oka niezbyt widać, ja można sprawdzić jej monotniczność: można co prawda wyliczyć jej pierwiastki, ale byłoby to dość skomplikowane z uwagi na jej 3 stopień.

Używając pochodnej sprawa staje się prostsza:
$$f'(x) = 3x^2 + 4x - 3$$

Skoro mamy już funkcję kwadratową, możemy obliczyć jej pierwiastki:
$$x_1 = {-2-√{13} }/{3}$$
$$x_2 = {-2+√{13} }/{3}$$

Skoro wiemy też, że przy największej potędze $$x$$-a jest znak dodatni, to możemy powiedzieć, że w przedziale $$(-∞, x_1)$$ funkcja rośnie, w przedziale $$< x_1, x_2 >$$ - maleje i w przedziale $$(x_2, ∞)$$ - znowu rośnie.
 

Ekstrema lokalne

Ekstremum lokalne to "wierzchołek" na wykresie funkcji. Precyzyjnie mówiąc: jest to miejsce, gdzie funkcja zmienia znak pochodnej, czyli zaczyna maleć, jeśli wcześniej rosła lub rosnąć, jeśli malała.

Geometryczna interpretacja ekstremum - to miejsce, gdzie styczna do wykresu jest równoległa do osi $$X$$.

1

Znajdowanie ekstremów polega po prostu na znalezieniu pierwiastków pochodnej.

Przykład: znaleźć ekstrema lokalne funkcji $$f(x) = (x-2)(x+3)(x+2)$$

1) Wymnażając wszystkie nawiasy doprowadzamy do sumy funkcji potęgowych:
$$f(x) = x^3+3 x^2-4 x-12$$

2) Liczymy pochodną:
$$f'(x) = 3x^2+6x-4$$

3) Znajdujemy pierwiastki pochodnej: są to właśnie ekstrema lokalne:
$$x_1 = -1-√{ {7}/{3} }$$
$$x_2 = -1+√{ {7}/{3} }$$

Drugi przykład będzie bardziej skomplikowany: znaleźć ekstrema funkcji $$f(x) = {(x-2)^2(x-3)^2(x+1)}/{5}$$

1) Jak widać wymnożenie wszystkich nawiasów nic nie pomoże, ponieważ mając wielomian piątego stopnia jego pochodna będzie stopnia czwartego, a nie znamy wzorów umożliwiających obliczenie pierwiastków wielomianu tak wysokiego stopnia.

Zobaczmy więc, jak wygląda wykres takiej funkcji:

2

2) Jak widać, ma ona dwa podwójne pierwiastki - są tam lokalne ekstrema, więc pochodna także na pewno ma tam pierwiastki. Jej wzór wygląda więc jakoś tak:
$$f'(x) = (x-2)(x-3)×W$$

gdzie $$W$$ jest nieznanym nam składnikiem kwadratowym (ponieważ pochodna ma być stopnia czwartego).
$$W = A(x^2 + Bx + C)$$

3) Możemy od razu stwierdzić, ile jest równe $$A$$ - licząc współczynnik przy pochodnej funkcji $$f(x)$$ dostajemy $$1$$ - ponieważ funkcja wygląda tak: $$f(x) = {x^5 + ...}/{5}$$, to $$f'(x) = {5x^4 + ...}/{5} = x^4 + ...$$.

4) Pozostaje nam wyliczyć $$B$$ i $$C$$. Robimy to wymnażając po prostu wzór funkcji i licząc pochodną, a później przyrównując odpowiednie współczynniki.
$$f'(x) = ({x^5-9 x^4+27 x^3-23 x^2-24 x+36}/{5})' = x^4-{36 x^3}/5+{81 x^2}/5-{46 x}/5-{24}/5$$

5) Widać, że $$C×(-2)×(-3)$$ musi być równe $$({-24}/{5})$$ - dostajemy więc $$C = {-4}/{5}$$.

6) Teraz możemy obliczyć $$B$$ - skupmy się na współczynniku przy $$x$$. Możemy go uzyskać poprzez "wzięcie" x-a z pierwszego, drugiego lub trzeciego nawiasu, z reszty biorąc wyraz wolny - jest on więc równy:
$${-46}/{5} = B(-2)(-3) + (-3)C + (-2)C$$

7) Podstawiając za $$C {4}/{5}$$ i wymnażając otrzymujemy w końcu:
$$B = {-11}/{5}$$

8) Udało się więc dość do funkcji kwadratowej:
$$W = x^2 - {11}/{5}x - {4}/{5}$$
której pierwiastkami są
$$x_1 = {1}/{10}(11+√{201})$$
$$x_2 = {1}/{10}(11-√{201})$$

9) Ostatecznie: wiemy, gdzie funkcja pochodna ma pierwiastki - są to liczby $$-2, -3, x_1, x_3$$, więc wiemy, że tam właśnie nasza wyjściowa funkcja ma ekstrema lokalne.

Spis treści

3 szkoły podstawowej
4 szkoły podstawowej
5 szkoły podstawowej
6 szkoły podstawowej
7 szkoły podstawowej
II gimnazjum
III gimnazjum
Matura podstawowa
Matura rozszerzona
Rozwiązane zadania
Rozważmy koła o promieniach różnej długości

`O\ -\ "obwód koła"`

`d\ -\ "długość średnicy koła"`

`O=pi*d,\ \ \ \ \ \ d>0`

Jest to proporcjonalność prosta, współczynnik proporcjonalności to π. 

Na trasie 60 km samochód pana Nowaka

`a)` 

`4,8\ l\ \ \ -\ \ \ 60\ km` 

`12,8\ l\ \ \ -\ \ \ x` 

`x=(12,8*strike60^15)/(strike(4,8)^(1,2))=` `(12,8*strike15^5)/(strike(1,2)^(0,4))=` `(strike(12,8)^(32)*5)/(strike(0,4)^1)=`  `160\ km` 

 

 

`b)` 

`60\ km\ \ \ -\ \ \ 4,8\ l` 

`255\ km\ \ \ -\ \ \ y` 

`y=(255*strike(4,8)^(0,4))/strike60^5=` `(strike255^51*0,4)/strike5^1=` `20,4\ l` 

 

 

`c)` 

Obliczmy, ile paliwa potrzeba na przejechanie jednego kilometra:

`4,8:60=(4,8)/60=48/600=8/100=0,08\ l` 

`y=0,08*x,\ \ \ \ x in RR_+` 

   

 

Kolarz w ciągu 3 sekund przejeżdża drogę

`2\ godz.\ 40\ min=2*60\ mi n+40\ mi n=160\ mi n=160*60\ sek`

 

Mamy zgodność jednostek czasu, możemy zapisać proporcję: 

`3\ sek\ \ \ \ \ \ \ \ \ \ \ -\ \ \ 15\ m`

`160*60\ sek\ \ \ -\ \ \ x\ m`

`x=(160*60*15)/3=160*20*15=160*300=48\ 000\ m=48\ km`

 

 

Dla każdej z poniższych funkcji liniowych podaj współczynnik

`a)\ a=1,\ \ b=7`

`b)\ a=-1,\ \ b=1`

`c)\ a=sqrt2,\ \ b=0`

`d)\ a=0,\ \ b=-4`

`e)\ a=3/2,\ \ b=-4/2=-2`

`f)\ a=-5/4,\ \ b=8/4=2`

Wyznacz sumę f+g oraz różnicę f-g

`a)`

`(f+g)(x)=f(x)+g(x)=ul(2x^5)-ul(ul(x^2))+ul(ul(ul(3x^3)))+ul(ul(ul(ul(2))))+ul(ul(ul(x^3)))-ul(2x^5)+ul(ul(x^2))-ul(ul(ul(ul(6))))=4x^3-4`

`(f-g)(x)=f(x)-g(x)=ul(2x^5)-ul(ul(x^2))+ul(ul(ul(3x^3)))+ul(ul(ul(ul(2))))-ul(ul(ul(x^3)))+ul(2x^5)-ul(ul(x^2))+ul(ul(ul(ul(6))))=4x^5+2x^3-2x^2+8`

 

 

 

`b)`

`(f+g)(x)=-3x^3+2x^5-x^6+7x^2+x+4x^5-x^2+x^6-3x^3=6x^5-6x^3+6x^2+x`

`(f-g)(x)=-3x^3+2x^5-x^6+7x^2+x-4x^5+x^2-x^6+3x^3=-2x^6-2x^5+8x^2+x`

 

 

 

`c)`

`(f+g)(x)=0,75x^6+2x^4-0,125x^2+2,5+1/8x^2-1/4x^6+3x^4-3/2=`

`\ \ \ \ \ \ \ \ \ \ \ \ \ =3/4x^6+2x^4-1/8x^2+2 1/2+1/8x^2-1/4x^6+3x^4-1 1/2=`

`\ \ \ \ \ \ \ \ \ \ \ \ \ =1/2x^6+5x^4+1`

`(f-g)(x)=0,75x^6+2x^4-0,125x^2+2,5-1/8x^2+1/4x^6-3x^4+3/2=`

`\ \ \ \ \ \ \ \ \ \ \ \ \ =3/4x^6+2x^4-1/8x^2+2 1/2-1/8x^2+1/4x^6-3x^4+1 1/2=`

`\ \ \ \ \ \ \ \ \ \ \ \ \ =x^6-x^4-1/4x^2+4`

Czy poniższa funkcja jest jednomianem

`a)\ "tak",\ st=7`

`b)\ y=x/4=1/4x^1,\ \ \ "tak",\ \ st=1`

`c)\ y=4/x=4x^-1,\ \ \ "nie, ponieważ" -1notinNN`

`d)\ y=6sqrtx=6x^(1/2),\ \ \ "nie, ponieważ" 1/2notinNN`

`e)\ "tak",\ \ \ st=3`

Zapisz wyrażenia opisujące pola wielokątów

`P_1=a*h=ah`

`P_2=1/2*a*h=1/2ah`

`P_3=1/2*(a+b)*h=1/2ah+1/2bh`

Jednomianami są wyrażenia pierwsze i drugie. 

Punkty A i B należą do wykresu funkcji liniowej

Równanie funkcji liniowej to y=ax+b. Aby wyznaczyć współczynniki a i b wystarczy wstawić współrzędne punktów A i B w miejsce x i y, a następnie rozwiązać otrzymany w ten sposób układ równań. 

 

 

`a)`

`{(-10=a*5+b), (5=a*0+b):}`

`{(-10=5a+b), (b=5):}`

`{(-10=5a+5\ \ \ |-5), (b=5):}`

`{(-15=5a\ \ \ |:5), (b=5):}`

`{(a=-3), (b=5):}`

 

`ul(ul(y=-3x+5))`

 

 

`b)`

`{(0=a*0+b), (10=a*6+b):}`

`{(b=0), (10=6a\ \ \ |:6):}`

`{(b=0), (a=10/6=5/3=1 2/3):}`

 

`ul(ul(y=1 2/3x)`

 

 

 

`c)`

`{(-2=a*3+b), (0=a*6+b):}\ \ \ \ |-`

`-2=-3a\ \ \ |:(-3)`

`a=2/3`

 

`0=2/3*6+b`

`0=4+b\ \ \ |-4`

`b=-4`

 

 

`ul(ul(y=2/3x-4))`

 

 

 

`d)`

`{(1=a*(-4)+b), (9=a*0+b):}`

`{(1=-4a+b), (b=9):}`

`{(1=-4a+9\ \ \ |-9), (b=9):}`

`{(-8=-4a\ \ \ |:(-4)), (b=9):}`

`{(a=2), (b=9):}`

 

`ul(ul(y=2x+9):}`

 

 

`e)`

`{(8=a*(-6)+b), (0=a*(-3)+b):}\ \ \ |-`

`8=-6a-(-3a)`

`8=-6a+3a`

`8=-3a\ \ \ |:(-3)`

`a=-8/3=-2 2/3`

 

`0=-8/3*(-3)+b`

`0=8+b\ \ \ |-8`

`b=-8`

 

`ul(ul(y=-2 2/3x-8))`

 

 

`f)`

`{(6=a*0+b), (0=a*(-4)+b):}`

`{(b=6), (0=-4a+6\ \ \ |-6):}`

`{(b=6), (-4a=-6\ \ \ |:(-4)):}`

`{(b=6), (a=6/4=3/2=1 1/2):}`

 

`ul(ul(y=1 1/2x+6):}`

W podanej sumie algebraicznej wskaż wyrazy podobne

`a)\ 2p^3+ul(3p^2)+ul(ul(2p))+ul(1/2p^2)+ul(ul(p))`

`b)\ ul(-3x^3y^2)+ul(ul(2x^2y^3))+ul(3x^3y^2)+2xy^3-ul(ul(x^2y^3))`

 

Zapisz liczbę w postaci 3k, 3k+1 lub 3k+2

`a)\ 26=3*8+2`

`b)\ 76=3*25+1`

`c)\ 108=3*36`

`d)\ 127=3*42+1`

`e)\ 713=3*237+2`