Prawdopodobieństwo warunkowe i całkowite - matura-rozszerzona - Baza Wiedzy - Odrabiamy.pl

Prawdopodobieństwo warunkowe i całkowite - matura-rozszerzona - Baza Wiedzy

Prawdopodobieństwo warunkowe

W zadaniach wymagających obliczenia prawdopodobieństwa często zdarza się, że wystąpienie jednego zdarzenia w jakiś sposób wpływa na prawdopodobieństwo drugiego. Przykładem może być sytuacja, w której losujemy kulkę z jednej z dziesięciu urn.

W urnach nieparzystych znajduje się po pięc kul białych i dwie zielone, w parzystych zaś po trzy białe i osiem zielonych. Pytanie brzmi: wiedząc, że nasza urna miała numer nieparzysty, jaką mamy szansę na wylosowanie kuli zielonej?

Od razu widać, że nasz wybór urny determinuje prawdopodobieństwo wylosowania określonego koloru kuli - w przypadku wybrania urny nieparzystej nich mamy dużo większą szansę wyciągnąć kulę białą (szansa wynosi ${5}/{7}$), w przypadku nieparzystej - prawdopodobnie wyciągniemy zieloną (z prawdopodobieństwem równym ${8}/{11}$).

Układ taki nazywa się prawdopodobieństwem warunkowym - pierwszy wybór (urny) wpływa na prawdopodobieństwo drugiego (koloru kuli).

Do obliczenia tego prawdopodobieństwa posłużymy się wzorem:

$P(A|B) = {P(A ∪ B)}/{P(B)}$

$P(A ∪ B)$ to prawdopodobieństwo wyciągnięcia kuli zielonej z urny nieparzstej - czyli ${8}/{22}$.

$P(B)$ oznacza szansę na wylosowanie urny nieparzystej - jest to po prostu ${1}/{2}$.

Jak widać, prawdopodobieństwo warunkowe wynosi w tym przypadku ${ {8}/{22} }/{ {1}/{2} } = {8}/{11}$

Prawdopodobieństwo całkowite

Twierdzenie o prawdopodobieństwie całkowitym to sposób na obliczanie sytuacji, które mogą zdarzać się na różne sposoby. Wróćmy do poprzedniego zadania: taki sam rozkład kul w urnach parzystych i nieparzystych, jednak tym razem pytamy, jakie jest w ogóle prawdopodobieństwo wyciągnięcia zielonej kuli.

Do obliczenia tego posłuży nam wzór:

$P(A) = sum_{i = 1}^{n} P(A|H_i)P(H_i)$

Mówi on tyle, że jeśli jest $n$ sposobów zajścia zdarzenia i każdy sposób ma prawdopodobieństwo zajścia $P(H_i)$, to prawdopodobieństwo zajścia zdarzenia jest równe sumie prawdopodobieństw warunkowch przemnożonych przez prawdopodobieństwa sposobów.

Stosując wzór na prawdopodobieństwo warunkowe możemy przekształcić równanie otrzymując:

$P(A) = sum_{i = 1}^{n} P(A cup H_i)$

Zawile to brzmi, jednak na przykładzie można przekonać się, że jest całkiem proste.

W naszym zadaniu istnieją dwie "drogi" wybrania kuli zielonej zależne od tego, czy najpierw wylosujemy urnę parzystą, czy nieparzystą.

Każde z tych zdarzeń ma prawdopodobieństwo zajścia równe ${1}/{2}$.

Prawdopodobieństwo wylosowania zielonej kuli w przypadku urn parzystych wynosi ${2}/{7}$, w przypadku nieparzystych - ${8}/{11}$.

Sumując otrzymujemy:

$P(A) = {2}/{7} × {1}/{2} + {8}/{11} × {1}/{2} = {39}/{77}$
 

Zadanie

Oblicz prawdopodobieństwo wyrzucenia szóstki przynajmniej raz rzucając kością do gry wedle zasad:

1) Rzucamy pierwszy raz - jeśli wypadła szóstka, kończymy grę.
2) Jeśli nie było szóstki, ale była liczba parzysta, to rzucamy dwoma kościami i kończymy grę.
3) Jeżeli wypadła liczba nieparzysta, rzucamy jedną kością jeszcze raz.

Nasze zdarzenie może zajść na kilka sposobów:

1) Z prawdopodobieństwem ${1}/{6}$ wyrzucimy ją za pierwszym razem.

2) Z prawdopodobieństwem ${2}/{6}$ dojdzie do sytuacji, gdy będziemy rzucali dwiema kościami - szansa na wyrzucenie chociaż jednej szóstki wzrasta wtedy do ${11}/{36}$, ponieważ wszystkich możliwych kombinacji rzutów jest 36, a możliwych kombinacji bez 6 - 25.

3) Z prawdopodobieństwem ${3}/{6}$ dojdzie do sytuacji, gdy będziemy rzucali jeszcze raz jedną kością - szansa wylosowania szóstki wynosi wtedy oczywiście ${1}/{6}$.

Korzytając z poznanego wzoru możemy obliczyć prawdopodobieństwo całkowite - jest ono równe prawdopodobieństwu wystąpienia każdej z sytuacji pomnożonemu przez prawdopodobieństwo wyrzucenia w tej sytuacji szóstki.

Mamy więc:

$P(6) = {1}/{6}*1 + {2}/{6}×{11}/{36} + {3}/{6}×{1}/{6}$
$P(6) = {19}/{54}$

Spis treści

Rozwiązane zadania
Rozwiąż nierówność

Wyznacz współrzędne ...

 

 

 

  

 

 

 

 

 

 

  

  

  

 

 

 

 

 

  

  

 

  

 

 

 

 

  

    

  

 

   

Z urny, w której jest dwa razy więcej

 

Opiszmy zdarzenie na drzewku. Na gałęziach drzewka zapisano odpowiednie prawdopodobieństwa

 

 

Zaznaczono gałęzie, które opisują zdarzenie A. 

 

 

 

 

 

 

 

 

Powierzchnia zadrukowanej części kartki...

 

Wymiary kartki to:

 

 

Pole zadrukowanej części wynosi 192 cm2 a więc:

 

 

 

Czyli funkcja opisująca pole kartki jest równa:

Obliczmy pochodną

 

Znajdźmy punkty podejrzewane o bycie ekstremum:

 

 

 

 

 

 

Zauważmy, że jest to minimum gdyż:

 

czyli

 

Zatem wymiary kartki wynoszą:

 

 

Oblicz:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Wykaż, że w trójkącie prostokątnym...

 

 

 

Chcemy pokazać, że  

 

 

 

 

Jest to twierdzenie Pitagorasa, więc powyższe równanie jest spełnione w każdym trójkącie prostokątnym.

  

 

Wyznacz wszystkie wartości parametru...

Założenia:

 

 

 

 

 

 

 

{premium}

Jeżeli równanie ma mieć dwa różne rozwiązania to wyróżnik funkcji musi być dodatni.

 

 

 

 

 

 

 

 

 

 

podglad pliku

 

 

Zauważmy, że jeżeli x = 2m, to równanie po lewej stronie jest równe 0 a liczba 2m będzie pierwiastkiem. Łatwo wtedy zauważyć, że nie będziemy mieli wtedy kolejnych rozwiązań.

Podstawmy pod równanie kwadratowe x = 2m, jeżeli wyliczone wartości parametru m będą należeć do rozwiązania równania to musimy je odrzucić z rozwiązania gdyż wtedy mamy tylko jedno rozwiązanie.

 

 

 

 

 

 

 

Zatem odrzucamy liczbę  

 

Zatem uwzględniając powyższe założenie otrzymujemy, że:

 

Przedstaw liczbę w postaci...

 

 

 

 

 

 

 

 

 

 

 

 

Naszkicuj wykres funkcji...

a)

 

Przesuwając o wektor  otrzymujemy:{premium}

 

 

 

Dwa rozwiązania dla  


b)

 

Przesuwając o wektor  

 

 

 

Dwa rozwiązania dla  


c)

 

Przesuwając o wektor  otrzymujemy:

 

 

 

Dwa rozwiązania dla  

Wyznacz współrzędna wierzchołków trójkąta...

 

 

 

 

     {premium}

 

 

 

 

   

 

Z pierwszego i trzeciego równania otrzymujemy:

 

 

 

 

 

 

Z drugiego i czwartego równania otrzymujemy:

 

 

 

 

 

 

Z drugiego równania otrzymujemy:

 

 

 

 

Z trzeciego równania otrzymujemy:

 

 

 

 

 

 

 

 

Rysunek pomocniczy:

Thumb 48 285

Łatwo zauważyć, że jest to trójkąt prostokątny.

 

 

 

 

 

 

 

Równanie okręgu: