Prawdopodobieństwo warunkowe i całkowite - matura-rozszerzona - Baza Wiedzy - Odrabiamy.pl

Prawdopodobieństwo warunkowe i całkowite - matura-rozszerzona - Baza Wiedzy

Prawdopodobieństwo warunkowe

W zadaniach wymagających obliczenia prawdopodobieństwa często zdarza się, że wystąpienie jednego zdarzenia w jakiś sposób wpływa na prawdopodobieństwo drugiego. Przykładem może być sytuacja, w której losujemy kulkę z jednej z dziesięciu urn.

W urnach nieparzystych znajduje się po pięc kul białych i dwie zielone, w parzystych zaś po trzy białe i osiem zielonych. Pytanie brzmi: wiedząc, że nasza urna miała numer nieparzysty, jaką mamy szansę na wylosowanie kuli zielonej?

Od razu widać, że nasz wybór urny determinuje prawdopodobieństwo wylosowania określonego koloru kuli - w przypadku wybrania urny nieparzystej nich mamy dużo większą szansę wyciągnąć kulę białą (szansa wynosi ${5}/{7}$), w przypadku nieparzystej - prawdopodobnie wyciągniemy zieloną (z prawdopodobieństwem równym ${8}/{11}$).

Układ taki nazywa się prawdopodobieństwem warunkowym - pierwszy wybór (urny) wpływa na prawdopodobieństwo drugiego (koloru kuli).

Do obliczenia tego prawdopodobieństwa posłużymy się wzorem:

$P(A|B) = {P(A ∪ B)}/{P(B)}$

$P(A ∪ B)$ to prawdopodobieństwo wyciągnięcia kuli zielonej z urny nieparzstej - czyli ${8}/{22}$.

$P(B)$ oznacza szansę na wylosowanie urny nieparzystej - jest to po prostu ${1}/{2}$.

Jak widać, prawdopodobieństwo warunkowe wynosi w tym przypadku ${ {8}/{22} }/{ {1}/{2} } = {8}/{11}$

Prawdopodobieństwo całkowite

Twierdzenie o prawdopodobieństwie całkowitym to sposób na obliczanie sytuacji, które mogą zdarzać się na różne sposoby. Wróćmy do poprzedniego zadania: taki sam rozkład kul w urnach parzystych i nieparzystych, jednak tym razem pytamy, jakie jest w ogóle prawdopodobieństwo wyciągnięcia zielonej kuli.

Do obliczenia tego posłuży nam wzór:

$P(A) = sum_{i = 1}^{n} P(A|H_i)P(H_i)$

Mówi on tyle, że jeśli jest $n$ sposobów zajścia zdarzenia i każdy sposób ma prawdopodobieństwo zajścia $P(H_i)$, to prawdopodobieństwo zajścia zdarzenia jest równe sumie prawdopodobieństw warunkowch przemnożonych przez prawdopodobieństwa sposobów.

Stosując wzór na prawdopodobieństwo warunkowe możemy przekształcić równanie otrzymując:

$P(A) = sum_{i = 1}^{n} P(A cup H_i)$

Zawile to brzmi, jednak na przykładzie można przekonać się, że jest całkiem proste.

W naszym zadaniu istnieją dwie "drogi" wybrania kuli zielonej zależne od tego, czy najpierw wylosujemy urnę parzystą, czy nieparzystą.

Każde z tych zdarzeń ma prawdopodobieństwo zajścia równe ${1}/{2}$.

Prawdopodobieństwo wylosowania zielonej kuli w przypadku urn parzystych wynosi ${2}/{7}$, w przypadku nieparzystych - ${8}/{11}$.

Sumując otrzymujemy:

$P(A) = {2}/{7} × {1}/{2} + {8}/{11} × {1}/{2} = {39}/{77}$
 

Zadanie

Oblicz prawdopodobieństwo wyrzucenia szóstki przynajmniej raz rzucając kością do gry wedle zasad:

1) Rzucamy pierwszy raz - jeśli wypadła szóstka, kończymy grę.
2) Jeśli nie było szóstki, ale była liczba parzysta, to rzucamy dwoma kościami i kończymy grę.
3) Jeżeli wypadła liczba nieparzysta, rzucamy jedną kością jeszcze raz.

Nasze zdarzenie może zajść na kilka sposobów:

1) Z prawdopodobieństwem ${1}/{6}$ wyrzucimy ją za pierwszym razem.

2) Z prawdopodobieństwem ${2}/{6}$ dojdzie do sytuacji, gdy będziemy rzucali dwiema kościami - szansa na wyrzucenie chociaż jednej szóstki wzrasta wtedy do ${11}/{36}$, ponieważ wszystkich możliwych kombinacji rzutów jest 36, a możliwych kombinacji bez 6 - 25.

3) Z prawdopodobieństwem ${3}/{6}$ dojdzie do sytuacji, gdy będziemy rzucali jeszcze raz jedną kością - szansa wylosowania szóstki wynosi wtedy oczywiście ${1}/{6}$.

Korzytając z poznanego wzoru możemy obliczyć prawdopodobieństwo całkowite - jest ono równe prawdopodobieństwu wystąpienia każdej z sytuacji pomnożonemu przez prawdopodobieństwo wyrzucenia w tej sytuacji szóstki.

Mamy więc:

$P(6) = {1}/{6}*1 + {2}/{6}×{11}/{36} + {3}/{6}×{1}/{6}$
$P(6) = {19}/{54}$

Spis treści

Rozwiązane zadania
Napisz równanie prostej, której wykres jest podany na poniższych rysunkach

Nie jest to wykres funkcji, ponieważ dla argumentu x=-3 jest przyjmowane nieskończenie wiele wartości.

 

{premium}

Jest to wykres funkcji, dla każdego argumentu jest przyjmowana dokładnie jedna wartość, ta wartość to 2. 

 

 

Podstawiamy w miejsce x i y współrzędne punktów, które należą do wykresu funkcji, np. (-2, 0) i (0, 3):

Jest to wykres funkcji - dla każdego argumentu jest przyjmowana dokładnie jedna wartość. 

Punkty A, B i C wyznaczają...

a) Rzuty prostokątne odpowiednich prostych zostały zaznaczone kolorem czerwonym:{premium}

Rzutem prostokątnym prostej PA jest odcinek AS.

Rzutem prostokątnym prostej PB jest odcinek BS.

Rzutem prostokątnym prostej PC jest odcinek CS.


b) Kąty nachylenia odpowiednich prostych zostały zaznaczone kolorem pomarańczowym:

Kątem nachylenia prostej PA jest kąt PAS.

Kątem nachylenia prostej PB jest kąt PBS.

Kątem nachylenia prostej PC jest kąt PCS.

 

a) Dany jest ciąg arytmetyczny ...

   

 

 

      {premium}

 

 

Zatem:

 

 

Z treści zadania wiemy, że:

 

 

 

 

 

 

 

 

 


 

 

 

 

 

Rozwiązując drugą równość otrzymujemy:

 

 

 

 

 

 

 

Łatwo zauważyć, że  nie spełnia pierwszego równania.

Dla  otrzymujemy:

 

 

 

 

 

 

 

 

 

Dla  otrzymujemy:

 

 

  

 

 

 

 

 

Wyznacz wartość najmniejszą...

a) rozwiązane w ćwiczeniach

 

b)

 

{premium}  

 

 

 

 

 

Uzasadnij, że pole trójkąta równobocznego...

Wiemy, że:

{premium}  

Trójkąt równoboczny ma wszystkie boki równej długości, zatem:

 

Beata poprosiła koleżanki o pomoc ...

x - liczba poproszonych koleżanek

y - liczba zaproszeń przypadająca na jedną osobę (w przypadku gdy mamy x koleżanek)

  

 

{premium}   

 

 

 

 

 

 

 

 

  

           

 

Pamiętajmy, że dwie Panie nie przyszły, zatem 6-2=4.

Zaproszenia wypisywały 4 osoby.  

Suma kwadratów trzech kolejnych liczb parzystych niepodzielnych przez 4...

Wypiszmy kilka kolejnych liczb parzystych: 2, 4, 6, 8, 10, 12, 14, 16, ... . 

Widzimy, że co druga liczba parzysta jest podzielna przez 4, więc:{premium}

2n, 2n+4, 2n+8 - trzy kolejne liczby parzyste niepodzielne przez 4 (∈ C)

(zakładamy, że n jest dobrane tak, by liczba 2n była niepodzielna prze 4; będziemy później sprawdzać, czy n jest odpowiednie)


Suma kwadratów tych liczb jest równa 1004, więc:

 

 

 

 

 

 

 


Dla n=-11:

 

 

 


Dla n=7:

 

 

 


W obu przypadkach  żadna z otrzymanych liczb nie jest podzielna przez 4, więc oba otrzymane rozwiązania są prawidłowe.


Odp. Szukane liczby to -22, -18, -14 lub 14, 18, 22.

 

Naszkicuj w jednym układzie współrzędnych

 

Rysujemy wykres funkcji f. 

Wykres funkcji g otrzymujemy, przesuwając wykres funkcji f o{premium} 1 jednostkę w prawo wzdłuż osi OX. 

Wykres funkcji h otrzymujemy, przesuwając wykres funkcji g o 2 jednostki w dół wzdłuż osi OY. 

Zauważmy, że aby otrzymać wykres funkcji h można przesunąć wykres funkcji f o 1 jednostkę w prawo wzdłuż osi OX oraz 2 jednostki w dół wzdłuż osi OY, czyli o wektor [1, -2].

 

  

 

 

 

Rysujemy wykres funkcji f. 

Wykres funkcji g otrzymujemy, przesuwając wykres funkcji f o 3 jednostki w prawo wzdłuż osi OX. 

Wykres funkcji h otrzymujemy, przesuwając wykres funkcji g o 2 jednostki w górę wzdłuż osi OY. 

Zauważmy, że aby otrzymać wykres funkcji h można przesunąć wykres funkcji f o 3 jednostki w prawo wzdłuż osi OX oraz 2 jednostki w górę wzdłuż osi OY, czyli o wektor [3,2].

 

 

Zaznacz na osi liczbowej

Wyznacz współrzędne punktu przecięcia przekątnych...

Równanie ogólne prostej:

 

 

Wyznaczmy równania prostych AC i BD.

 

  • Prosta AC:

 

 

Stąd:

 

{premium}  

Przyjmijmy, że B = 1, wtedy:

 

czyli

 

 

 

 

Równanie ogólne prostej:

 

 

Prosta BD:

 

 

Stąd

 

 

 

zatem

 

 

Przyjmijmy, że B = 1, wtedy

C = 1

Równanie ogólne prostej:

 

 

Punkt przecięcia prostych zawierających przekątne czworokąta:

 

 

 

 

 

Punkt przecięcia ma współrzędne: