Wyznaczanie środka odcinka - matura-podstawowa - Baza Wiedzy

Wyznaczanie środka odcinka

W tym temacie dowiecie się w jaki sposób znaleźć bez rysowania środek odcinka znajdującego się w układzie współrzędnych.

Aby znaleźć taki punkt oczywiście jest nam potrzebny wzór:
S $$({x_1+x_2}/2;{y_1+y_2}/2)$$

Odcienk ma dwa końce A($$x_1$$,$$y_1$$) i B($$x_2$$,$$y_2$$). Punkt S jest połową odcinka. Rysując odcinek i zaznaczając na nim punkt środkowy możemy zauważyć, że zarówno na osi X jak i na osi Y jest taka sama odległość od końców odcinka. Dlatego we wzorze dzielimy sumę wartości osi x i y na dwa.

Przykład:

Znajdź współrzędne środka S odcinka AB, jeśli A(0,3) , B(1,5).
Zatem musimy zrobić to według następującego schematu:
S $$({x_1+x_2}/2;{y_1+y_2}/2)$$

Pamiętamy, że nasze x i y to po prostu podane punkty, więc wszystko jest jak na dłoni. Podstawiamy:
S $$({0+1}/2;{3+5}/2)$$

I ostatecznie:
S $$(1/2;4)$$


W celu wyznaczenia jednego z końców odcinka (B), mając jego środek (S) i drugi koniec (A), wystarczy dołożyć do połowy odcinka (AS) drugą połowę (czyli też AS). W tym celu wystarczy przesunąć środek S o tyle samo, o ile jest odsunięty od punktu A. Przykładowo:

A(1,1) --- S(2,3) --- B(x,y)

Więc B(2+(2-1);3+(3-1))
Zatem B (3;5)

Zapis formalny:
$$B(x,y)$$ -> szukany punkt
$$S(x_1,y_1)$$ -> środek odcinka
$$A(x_2,y_2)$$ -> drugi punkt odcinka

$$x=x_1+x_1-x2$$
$$y=y_1+y_1-y_2$$

 

Zadania powtórzeniowe

Zadanie 1.

Znajdź współrzędne środka odcinka AB, gdzie A(-2;-1), B(-6;5).

Mamy tutaj wszystko na talerzu, zatem bierzemy nasz wzór:
S $$({x_1+x_2}/2;{y_1+y_2}/2)$$

oraz nasze punkty:
A(-2;-1)
B(-6;5)

Podmieniamy nasze zmienne na liczby:
S $$({-2-6}/2;{-1+5}/2)$$
S $$({-8}/2;4/2)$$
S $$(-4;2)$$

Zatem nasz punkt to: S $$(-4;2)$$

Zadanie 2.

Znajdź koniec B odcinka AB, jeżeli A(1;4), a S(2;7), gdzie S jest środkiem odcinka.

B(x,y) -> szukany punkt
S$$(x_1,y_1)$$ -> S(2;7), czyli $$x_1=2$$, a $$y_1=7$$
A$$(x_2,y_2)$$ -> A(1;4), czyli $$x_2=1$$, a $$y_2=4$$

$$x=x_1+x_1-x_2$$
$$y=y_1+y_1-y_2$$
$$x=2+2-1=3$$
$$y=7+7-4=14-4=10$$

Zatem punkt B(3;10).

Spis treści

Rozwiązane zadania
Narysuj dowolny wektor ...

 

 

 

 

   

 

Zaznacz na osi liczbowej zbiór rozwiązań

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7. 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 2/5.

 

 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7/5.

Włącz czynnik pod pierwiastek

Oblicz obwód i pole trapezu...

Rysunek poglądowy:

 

 

 

 

 

 

Obwód:

 

 

Pole:

 

Oblicz f(-2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Dane są zbiory A=(-∞;5),B=<a;9). Jeśli A∩B
Zatem:
Sporządź wykresy funkcji...

a) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są niedodatnie.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

 

b) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są nieujemne.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

Oblicz wartości pozostałych funkcji ...

 

 

 {premium}

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Prosta l jest styczna do okręgu ...

Przyjmijmy oznaczenia jak na rysunku. Zauważmy, że:

  

 

 

 

Trójkąt ROP jest trójkątem równoramiennym, ponieważ |OR|=|OP|.

Miary kątów przy podstawie PR są sobie równe i wynoszą 42o.

Korzystając z tw. o sumie miar kątów w trójkącie (dla trójkata ROP) obliczamy miarę kąta ß:

 

 

 

 

 

Odp: Cięciwa wyznacza kąt środkowy o mierze 96o.

Wyznacz równanie osi symetrii paraboli oraz współrzędne jej wierzchołka

Najpierw wyznaczymy miejsca zerowe (x₁ i x₂, następnie wyznaczymy równanie osi symetrii jako średnią arytmetyczną tych miejsc zerowych. Współrzędna x wierzchołka paraboli jest równa tyle, ile oś symetrii. Współrzędna y wierzchołka paraboli to z kolei wartość, jaką osiąga funkcja dla argumentu równego pierwszej współrzędnej wierzchołka paraboli)

 

 

 

 

 

 

 

 {premium}

 

 

   - współrzędne wierzchołka paraboli

   - równanie osi symetrii paraboli