Własności funkcji na podstawie wykresu - matura-podstawowa - Baza Wiedzy

Dziedzina

Jest to zbiór możliwych x jakich będziemy używać w funkcji. Czyli patrząc „poziomo” jest to ta część osi X dla której znajdziemy punkt. Zaznaczę dziedzinę najpierw graficznie. Można ją łatwo wyznaczyć metodą prostokąta, który ma zawierać końcówki wykresu. Oś x w prostokącie lub obok prostokąta wyznacza dziedzinę.

Jak to wygląda na wykresie?

wyk2
 

Czerwona linia odcięta niebieskimi wyznacza nam dziedzinę zatem dziedzina to:

$$D=<-6;4>$$  

Zbiór wartości

Jest to z kolei zbiór możliwych y jakie może mieć funkcja, je również wyznaczamy metodą prostokąta i to dokładnie tego samego, co w przypadku dziedziny.

wyk3

Możliwe y to niebieska linia przecięta czerwonymi.

Zatem:

$$y=<-1;3>$$
 

Wartość maksymalna

Wartościami nazywamy liczby na osi y, więc wartością maksymalną jest największy y jaki jesteśmy w stanie odczytać z wykresu. Jak go nie przeoczyć? Połóż linijkę wzdłuż osi x:

wyk4

I przesuwaj do samej góry, dopóki linijka przecina wykres.

Powinieneś skończyć tu:

wyk5

Zatem $$f_{max}=3$$
 

Wartość minimalna

Robimy dokładnie analogicznie jak w przypadku wartości maksymalnej, tylko zaczynamy od góry:

wyk6

Powinniśmy skończyć tu:

wyk7

Zatem $$f_{min}=-1$$.

Miejsca zerowe

Są to punkty przecięcia wykresu z osią x, czyli argumenty dla których y=0. Aby je znaleźć wystarczy położyć naszą linijkę na osi X i sprawdzić gdzie wykres ją przecina:

wyk8

Przecina w $$x=-2$$ i $$x=-4$$.

Zatem:

$$f(-2)=0$$

$$f(-4)=0$$
 

Monotoniczność

Ostatnie co nam zostało, czyli sprawdzenie kiedy funkcja jest rosnąca, kiedy malejąca, kiedy stała.

Dla malejącej y zmniejsza się gdy przesuwamy się w prawo

Dla stałej y się nie zmienia

Dla rosnącej y rośnie gdy przesuwamy się w prawo

Zaznaczę na wykresie:

Rosnącą - kolor czerwony

Malejącą - kolor niebieski

Stałą - kolor zielony

wyk9

Pozostaje nam spisać przedziały

$$f↓$$ dla $$xϵ<-6;-3> $$

$$f→$$ dla $$ xϵ<-1;1>$$

$$f↑$$ dla $$ xϵ<-3;-1>$$
$$f↑$$ dla $$ xϵ<1;4> $$

 

Zadania powtórzeniowe

Zadanie 1.

Wyznacz Dziedzinę, zbiór wartości, miejsca zerowe, monotoniczność funkcji oraz wartość minimalną i maksymalną.

zad1

Dziedzina:

$$D=(-8;-6>$$

Zbiór Wartości:

$$y=(-3;4)$$

Miejsca zerowe:

$$f(-5)=0$$

$$f(0)=0$$

Wartość min:

Funkcja nie posiada wartości minimalnej, ponieważ możemy wziąć na wykresie punkt dowolnie blisko niezamalowanego kółeczka, które odpowiada y=-3, ale nie możemy osiągnąć y=-3. Na przykład jeśli powiem, że -2,999 jest najmniejsze, będzie to nieprawda, bo -2,999999 jest mniejsze. Jeśli powiem, że -2,(9) jest najmniejszą wartością funkcji, znowu skłamię, bo -2,(9)=-3, a zatem nie należy do zbioru wartości funkcji.

Wartość max:

Podobnie jak poprzednio, funkcja nie posiada wartości maksymalnej (możemy tylko brać liczby coraz bliższe 3,(9)=4).

Monotoniczność:

$$f↓$$ dla $$xε<-2;0>$$

$$f→$$ dla $$xε<4;6>$$

$$f↑$$ dla $$xε(-8;-2)$$
i
$$f↑$$ dla $$xε<0;4)$$

Zadanie 2.

Wyznacz Dziedzinę, zbiór wartości, miejsca zerowe, monotoniczność funkcji oraz wartość minimalną i maksymalną.

zad2

Dziedzina:

$$D=<-0.5;8.5>$$

Zbiór Wartości:

$$y=<0;8>$$

Miejsca zerowe:

$$f(2)=0$$

$$f(6)=0$$

Wartość minimalna:

$$f_{min}=0$$

Wartość maksymalna:

$$f_{max}=8$$

Monotoniczność:

$$f↓$$ dla $$xϵ<-0.5;2>$$$$<4;6>$$

$$f→$$ dla $$xϵ∅$$ czyli nigdzie nie jest stała

$$f↑$$ dla $$xϵ<2;4>$$$$<6;8.5>$$
 

Spis treści

Rozwiązane zadania
Narysuj dowolny wektor ...

 

 

 

 

   

 

Zaznacz na osi liczbowej zbiór rozwiązań

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7. 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 2/5.

 

 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7/5.

Włącz czynnik pod pierwiastek

Oblicz obwód i pole trapezu...

Rysunek poglądowy:

 

 

 

 

 

 

Obwód:

 

 

Pole:

 

Oblicz f(-2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Dane są zbiory A=(-∞;5),B=<a;9). Jeśli A∩B
Zatem:
Sporządź wykresy funkcji...

a) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są niedodatnie.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

 

b) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są nieujemne.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

Oblicz wartości pozostałych funkcji ...

 

 

 {premium}

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Prosta l jest styczna do okręgu ...

Przyjmijmy oznaczenia jak na rysunku. Zauważmy, że:

  

 

 

 

Trójkąt ROP jest trójkątem równoramiennym, ponieważ |OR|=|OP|.

Miary kątów przy podstawie PR są sobie równe i wynoszą 42o.

Korzystając z tw. o sumie miar kątów w trójkącie (dla trójkata ROP) obliczamy miarę kąta ß:

 

 

 

 

 

Odp: Cięciwa wyznacza kąt środkowy o mierze 96o.

Wyznacz równanie osi symetrii paraboli oraz współrzędne jej wierzchołka

Najpierw wyznaczymy miejsca zerowe (x₁ i x₂, następnie wyznaczymy równanie osi symetrii jako średnią arytmetyczną tych miejsc zerowych. Współrzędna x wierzchołka paraboli jest równa tyle, ile oś symetrii. Współrzędna y wierzchołka paraboli to z kolei wartość, jaką osiąga funkcja dla argumentu równego pierwszej współrzędnej wierzchołka paraboli)

 

 

 

 

 

 

 

 {premium}

 

 

   - współrzędne wierzchołka paraboli

   - równanie osi symetrii paraboli