Własności funkcji na podstawie wykresu - matura-podstawowa - Baza Wiedzy

Dziedzina

Jest to zbiór możliwych x jakich będziemy używać w funkcji. Czyli patrząc „poziomo” jest to ta część osi X dla której znajdziemy punkt. Zaznaczę dziedzinę najpierw graficznie. Można ją łatwo wyznaczyć metodą prostokąta, który ma zawierać końcówki wykresu. Oś x w prostokącie lub obok prostokąta wyznacza dziedzinę.

Jak to wygląda na wykresie?

wyk2
 

Czerwona linia odcięta niebieskimi wyznacza nam dziedzinę zatem dziedzina to:

$$D=<-6;4>$$  

Zbiór wartości

Jest to z kolei zbiór możliwych y jakie może mieć funkcja, je również wyznaczamy metodą prostokąta i to dokładnie tego samego, co w przypadku dziedziny.

wyk3

Możliwe y to niebieska linia przecięta czerwonymi.

Zatem:

$$y=<-1;3>$$
 

Wartość maksymalna

Wartościami nazywamy liczby na osi y, więc wartością maksymalną jest największy y jaki jesteśmy w stanie odczytać z wykresu. Jak go nie przeoczyć? Połóż linijkę wzdłuż osi x:

wyk4

I przesuwaj do samej góry, dopóki linijka przecina wykres.

Powinieneś skończyć tu:

wyk5

Zatem $$f_{max}=3$$
 

Wartość minimalna

Robimy dokładnie analogicznie jak w przypadku wartości maksymalnej, tylko zaczynamy od góry:

wyk6

Powinniśmy skończyć tu:

wyk7

Zatem $$f_{min}=-1$$.

Miejsca zerowe

Są to punkty przecięcia wykresu z osią x, czyli argumenty dla których y=0. Aby je znaleźć wystarczy położyć naszą linijkę na osi X i sprawdzić gdzie wykres ją przecina:

wyk8

Przecina w $$x=-2$$ i $$x=-4$$.

Zatem:

$$f(-2)=0$$

$$f(-4)=0$$
 

Monotoniczność

Ostatnie co nam zostało, czyli sprawdzenie kiedy funkcja jest rosnąca, kiedy malejąca, kiedy stała.

Dla malejącej y zmniejsza się gdy przesuwamy się w prawo

Dla stałej y się nie zmienia

Dla rosnącej y rośnie gdy przesuwamy się w prawo

Zaznaczę na wykresie:

Rosnącą - kolor czerwony

Malejącą - kolor niebieski

Stałą - kolor zielony

wyk9

Pozostaje nam spisać przedziały

$$f↓$$ dla $$xϵ<-6;-3> $$

$$f→$$ dla $$ xϵ<-1;1>$$

$$f↑$$ dla $$ xϵ<-3;-1>$$
$$f↑$$ dla $$ xϵ<1;4> $$

 

Zadania powtórzeniowe

Zadanie 1.

Wyznacz Dziedzinę, zbiór wartości, miejsca zerowe, monotoniczność funkcji oraz wartość minimalną i maksymalną.

zad1

Dziedzina:

$$D=(-8;-6>$$

Zbiór Wartości:

$$y=(-3;4)$$

Miejsca zerowe:

$$f(-5)=0$$

$$f(0)=0$$

Wartość min:

Funkcja nie posiada wartości minimalnej, ponieważ możemy wziąć na wykresie punkt dowolnie blisko niezamalowanego kółeczka, które odpowiada y=-3, ale nie możemy osiągnąć y=-3. Na przykład jeśli powiem, że -2,999 jest najmniejsze, będzie to nieprawda, bo -2,999999 jest mniejsze. Jeśli powiem, że -2,(9) jest najmniejszą wartością funkcji, znowu skłamię, bo -2,(9)=-3, a zatem nie należy do zbioru wartości funkcji.

Wartość max:

Podobnie jak poprzednio, funkcja nie posiada wartości maksymalnej (możemy tylko brać liczby coraz bliższe 3,(9)=4).

Monotoniczność:

$$f↓$$ dla $$xε<-2;0>$$

$$f→$$ dla $$xε<4;6>$$

$$f↑$$ dla $$xε(-8;-2)$$
i
$$f↑$$ dla $$xε<0;4)$$

Zadanie 2.

Wyznacz Dziedzinę, zbiór wartości, miejsca zerowe, monotoniczność funkcji oraz wartość minimalną i maksymalną.

zad2

Dziedzina:

$$D=<-0.5;8.5>$$

Zbiór Wartości:

$$y=<0;8>$$

Miejsca zerowe:

$$f(2)=0$$

$$f(6)=0$$

Wartość minimalna:

$$f_{min}=0$$

Wartość maksymalna:

$$f_{max}=8$$

Monotoniczność:

$$f↓$$ dla $$xϵ<-0.5;2>$$$$<4;6>$$

$$f→$$ dla $$xϵ∅$$ czyli nigdzie nie jest stała

$$f↑$$ dla $$xϵ<2;4>$$$$<6;8.5>$$
 

Spis treści

3 szkoły podstawowej
4 szkoły podstawowej
5 szkoły podstawowej
6 szkoły podstawowej
7 szkoły podstawowej
II gimnazjum
III gimnazjum
Matura podstawowa
Matura rozszerzona
Rozwiązane zadania
Zaznacz liczby parzyste

Jeśli liczbę da się zapisać w postaci: 

`2*("coś")`

gdzie "coś" jest liczbą naturalną, to jest to liczba parzysta. 

Jeśli natomiast liczbę da się zapisać jako:

`2*("coś")+1`

to jest to liczba nieparzysta.

 

Liczby a i b już są w takiej postaci, zajmijmy sie następnymi liczbami:

`c=2n+3=2n+2+1=2(n+1)+1`

`d=4n+2=2(2n+1)`

`e=4n+3=4n+2+1=2(2n+1)+1`

`g=(4n-1)-(2n-3)=4n-1-2n+3=2n+2=2(n+1)`

`h=(4n-1)-2(n-3)=4n-1-2n+6=2n+5=2n+4+1=2(n+2)+1`

 

 

Możemy teraz rozwiązać zadanie:

`ul(a=2n)\ \ \ \ \ \ \ \ \ \ ul(ul(c=2n+3))\ \ \ \ \ \ ul(ul(e=4n+3))\ \ \ \ \ \ \ ul(g=(4n-1)-(2n-3))`

`ul(ul(b=2n+1))\ \ \ \ \ ul(d=4n+2)\ \ \ \ \ ul(f=2(2n+1))\ \ \ \ \ ul(ul(h=(4n-1)-2(n-3)))`

Oceń wartość logiczną zdania.

a) fałsz

b) prawda

c) fałsz

Wśród poniższych wypowiedzi wskaż zdania

`a)`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe. 

 

`b)`

Nie jest to zdanie - wypowiedź jest pytaniem, a nie wypowiedzią oznajmującą.

 

`c)`

Jest to zdanie - możemy stwierdzić, że jest ono prawdziwe.

 

`d)`

Nie jest to zdanie - dla różnych x przyjmuje ono różną wartość logiczną, np. dla 3 jest prawdziwe, ale dla 2 jest nieprawdziwe.

 

`e)`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe.

 

`f)\`

`(-100)^3=-100*(-100)*(-100)=-1\ 000\ 000`

`-100^3=-1*100^3=-1*100*100*100=-1\ 000\ 000`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe. 

 

`g)`

Nie jest to zdanie - na końcu znajduje się wykrzynik. 

 

`h)`

Jest to zdanie - możemy stwierdzić, że jest ono prawdziwe.

Podaj przykład takich dwóch zdań p oraz q

Alternatywa będzie prawdziwa, jeśli przynajmniej jedno ze zdań p, q będzie prawdziwe, natomiast koniunkcja będzie fałszywa, jeśli przynajmniej jedno ze zdań p, q będzie fałszywe. Musimy więc podać przykład takich dwóch zdań, z których jedno jest prawdziwe, a drugie fałszywe. 

Poniżej podajemy kilka takich przykładów:

 

`a)`

`p:\ \ 2inN\ \ \ \ \ w(p)=1`

`q:\ \ piinW\ \ \ \ w(q)=0`

 

 

`b)`

`p:\ \ NWD(1,7)=7\ \ \ \ w (p)=0`

`q:\ \ 2>1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ w(q)=1`

 

 

`c)`

`p:\ \ "Polska leży w Europie"\ \ \ w(p)=1`

`q:\ \ "Opole to stolica Polski"\ \ \ w(q)=0`

 

Wiadomo, że prawdziwe są zdania p∨q

Alternatywy p∨q i p∨(¬q) różnią się tylko drugim zdaniem. Jeśli zdanie q jest prawdziwe, to zdanie ¬q jest nieprawdziwe, natomiast jeśli zdanie q jest nieprawdziwe, to zdanie ¬q jest prawdziwe - zawsze jedno ze zdań ¬q ma wartość logiczną 0. 

Zatem zdanie p nie może być fałszywe, bo wtedy któraś alternatywa byłaby fałszywa (oba zdania proste tworzące jedną alternatywę byłyby fałszywe), stąd wniosek, że wartość logiczna zdania p wynosi 1. 

 

`w(p)=1\ \ \ =>\ \ \ w(notp)=0\ \ \ =>\ \ \ w((#(notp)^0)wedgeq)=0`

Niezależnie od tego, jaką wartość logiczną przyjmuje zdanie q, wartość logiczna zdania (¬p)∧q wynosi 0, ponieważ pierwsze zdanie (¬p) jest fałszywe, więc koniunkcja jest fałszywa. 

Zapisz liczbę w postaci 3k, 3k+1 lub 3k+2

`a)\ 26=3*8+2`

`b)\ 76=3*25+1`

`c)\ 108=3*36`

`d)\ 127=3*42+1`

`e)\ 713=3*237+2`

Zapisz liczby w postaci

`a)` 

Zamienimy część ułamkową wyrażoną ułamkiem okresowym na ułamek zwykły. 

Mnożymy ułamek razy 10 do tej potęgi, jaką długość ma okres - u nas mnożymy przez 10 do potęgi pierwszej (czyli przez 10).

`\ \ \ x=0,777...` 

`10x=7,777...` 

`10x-x=7,777...-0,777...` 

`9x=7\ \ \ |:9` 

`x=7/9` 

Zapisujemy liczbę w postaci ułamka zwykłego:

`-2,(7)=-2 7/9=-25/9`  

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ x=0,888...` 

`10x=8,888...` 

`10x-x=8,888...-0,888...` 

`9x=8\ \ \ |:9` 

`x=8/9` 

 

`-7,(8)=-7 8/9=-71/9` 

 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

`\ \ \ x=0,2666...` 

`10x=2,6666...` 

`10x-x=2,6666...-0,2666...` 

`9x=2,4 \ \ |:9` 

`x=(2,4)/9=(0,8)/3=8/30=4/15`  

 

`1,2(6)=1 4/15=19/15` 

`ul(ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))`      

 

 

`b)` 

`\ \ \ \ x=0,05454...` 

`100x=5,45454...` 

`100x-x=5,45454...-0,05454...`  

`99x=5,4\ \ \ |:99` 

`x=(5,4)/99=(0,6)/11=6/110=3/55` 

 

`3,0(54)=3 3/55=168/55` 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ \ \ x=0,324324...` 

`1000x=324,324324...` 

`1000x-x=324,324324...-0,324324...` 

`999x=324\ \ \ |:999` 

`x=324/999=108/333=36/111` 

 

`-2,(324)=-2 36/111=-258/111` 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ \ \ x=0,0135135...` 

`1000x=13,5135135...` 

`1000x-x=13,5135135...-0,0135135...` 

`999x=13,5\ \ \ |:999` 

`x=(13,5)/999=(1,5)/111=15/1110=3/222` 

 

`8,0(135)=8 3/222=1779/222` 

Nie wykonując dzielenia podaj, które spośród liczb
  • Aby liczba dzieliła się przez 15 musi dzielić się przez 3 i przez 5, co oznacza, że suma jej cyfr musi byc liczbą podzielną przez 3 oraz jej ostatnią cyfrą musi być 0 lub 5. 
  • Aby liczba dzieliła się przez 45, musi dzielić się przez 9 i przez 5, co oznacza, że suma jej cyfr musi być liczbą podzielną przez 9 oraz jej ostatnią cyfrą musi być 0 lub 5
  • Aby liczba dzieliła się przez 75, musi dzielić się przez 3 i przez 25, co oznacza, że suma jej cyfr musi być liczbą podzielną przez 3 oraz jej dwie ostatnie cyfry to 00, 25, 50 lub 75. 

 

`a)`

`1+1+5+5=12`

 

Liczba 1155 jest podzielna przez 15. 

 

`b)`

`9+8+2+5=24`

Liczba 9825 jest podzielna przez 15 i 75. 

 

`c)`

`5+1+6+5=17`

Liczba 5165 nie jest podzielna przez 15, 45 ani 75.

 

 

`d)`

`8+2+3+5=18`

Liczba 8235 jest podzielna przez 15 i 45.

 

Utwórz zaprzeczenie zdania i oceń jego wartość

a)

Zaprzeczenie zdania:

Liczba 6 nie jest liczbą parzystą.

Wartość logiczna zaprzeczenia:

Fałsz.

 

b)

Zaprzeczenie zdania:

Liczba 17 nie jest podzielna przez 3.

Wartość logiczna zaprzeczenia:

Prawda.

 

c)

Zaprzeczenie zdania:

`5<=7`

Wartość logiczna zaprzeczenia:

Prawda.

 

d)

Zaprzeczenie zdania:

`0>3`

Wartość logiczna zaprzeczenia:

Fałsz

 

e)

Zaprzeczenie zdania:

`13-9!=5`

Wartość logiczna zaprzeczenia:

Prawda.

 

f)

Zaprzeczenie zdania:

`pi>=3`

Wartość logiczna zaprzeczenia:

Prawda.

 

g)

Zaprzeczenie zdania:

`7/17=1`

Wartość logiczna zaprzeczenia:

Fałsz

 

h)

Zaprzeczenie zdania:

`14/16!=2/3`

Wartość logiczna zaprzeczenia:

Prawda.

 

Podaj najmniejszą dodatnią liczbę naturalną podzielną przez

`a)\ 24`

`b)\ 60`

`c)\ 144`

`d)\ 120`