Trygonometria i planimetria w zadaniach - matura-podstawowa - Baza Wiedzy

Zadania powtórzeniowe

Zadanie 1.

Wyznacz miarę kąta β jeśli $$α=142°$$.

img10

Obliczmy kąt obok Bety, jest to podstawa trójkąta równoramiennego stworzonego z promieni, więc:

$$180-142=38$$

$$38:2=19$$

img11

Wiemy, że styczna z okręgiem „styka się” pod kątem 90 stopni do promienia, zatem kąt

$$β=90-19=71°$$

Zadanie 2.

W trapezie równoramiennym jedna podstawa jest dwa razy dłuższa od drugiej, a ramiona mają długość równą długości krótszej podstawy. Znajdź miarę kąta ostrego trapezu.

Narysujmy sobie tę sytuację:

img12

Aby znaleźć miarę kąta ostrego, musimy mieć jeden z trzech czerwonych boków aby użyć trygonometrii:

img13

Możemy łatwo obliczyć najkrótszy to znów trapez równoramienny, więc po obu stronach musimy mieć w sumie $$2x-x=x$$ , zatem:

img14

Mając takie boki możemy użyć cosinusa:

$$cos α={0,5x}/x=0,5=1/2$$

A skoro

$$cos α=1/2$$

To:

$$α=60°$$

Zadanie 3.

Promień koła zwiększono o 25%, o ile zwiększyło się jego pole.

Promień i pole przed:

$$r$$

$$P=πr^2$$


Pole i promień po:

$$125%r={125}/{100} r=5/4 r$$

$$P=π(5/4 r)^2={25}/{16} πr^2$$

Zatem pole zostało zwiększone $${25}/{16}$$ krotnie.

 

Spis treści

Rozwiązane zadania
Jeden z boków prostokąta ma długość 18 cm ...

 

Oznaczmy długość szukanego boku przez x. Aby prostokąty były podobne, musi być prawdziwa

jedna z proporcji:

   

  

Długość drugiego boku powinna być równa 12 cm lub 27 cm.

 

 Obliczmy jaką długość ma przekątna pierwszego prostokąta: 

 

Stosunek długości przekątnej pierwszego prostokąta do długości przekątnej drugiego prostokąta: 

 

Sprawdźmy, czy stosunek długości któregoś z boków pierwszego prostokąta do długości 20 cm boku drugiego prostokąta wynosi `4/5` 

Prostokąty są więc podobne, a skala podobieństwa wynosi `4/5` 

 

Obliczmy obwód pierwszego prostokąta: 

 

Obliczmy jaką długość ma przekątna większego prostokąta: 

 

Stosunek długości przekątnych także jest równy skali podobieństwa, oznaczmy długośc przekątnej mniejszego prostokąta przez y:


`3sqrt41*2=3y\ \ \ |:3` 

Wyznacz punkty wspólne wykresów ...

 

 

  

      

  

 

 

 

    

  

  

 

 

 

 

 

 

 

 

Naszkicuj wykres dowolnej funkcji...

a) Wykres:

 

b) Wykres:

 

Funkcje fg mają takie samo miejsce zerowe.

 

Funkcje fh przecinają się w tym samym punkcie z osią y.

 

Wszystkie funkcje mają taką samą dziedzinę i zbiór wartości.

Nierówność spełniają:

Odpowiedź A jest fałszywa, ponieważ np. liczba  jest mniejsza od  ale  {premium}

Odpowiedź B jest fałszywa np. z tego samego powodu, co A.

Odpowiedź C jest fałszywa np. z tego samego powodu, co A.


Prawidłowa odpowiedź to D.

Podaj przykłady liczb niewymiernych, których:

a)

b)

Jakim liczbom odpowiadają punkty zaznaczone na osi?

Aby obliczyć jednostkę, odejmujemy od wybranej większej zaznaczonej liczby mniejszą zaznaczoną liczbę i dzielimy na ilość odcinków jednostkowych znajdujących się między tymi liczbami. 

 

 

 

 

 {premium}

 

 

 

 

 

 

 `-3 +9/7=-3+1 2/7=` `=-1 5/7` 

 

 

 

 

 `4/3=1 1/3` 

 `3 6/15-1 5/15=` `2 1/15` 

 `3 2/5+8/3=` `3 2/5+2 2/3=` 

 `5 16/15=6 1/15` 

 `7 6/15+1 5/15=` `8 11/15` 

 

 

 

 `(1 5/11+2/11)/3=` `1 7/11:3=` `18/11*1/3=6/11` 

 

 

 `1 5/11+12/11=` `1 5/11+1 1/11=` `2 6/11` 

 

W tabeli podano długości

Długość połowy obwodu różni się od liczby pi o mniej niż 0,01 dla dwóch ostatnich wielokątów (wyniki zostały podkreślone). 

 

Kurtki uszyte w zakładzie krawieckim...

a) Skoro kurtka jest sprzedawana po 190 zł a koszt jej produkcji to 110 zł to znaczy, że dochód z każdej sprzedanej kurtki wynosi 80 zł. Zatem wzór funkcji to:

 

 

b) Sprawdźmy dla jakiego x wartość funkcji będzie dodatnia:

 

 

 

 

 

 

Odpowiedź: Szycie kurtek zacznie przynosić zyski jeżeli zostanie sprzedanych co najmniej 188 kurtek.

 

c) Sprawdźmy kiedy wartość funkcji będzie większa bądź równa 2000.

 

 

 

 

 

Odpowiedź: Szycie kurtek wygeneruje 2000 zł dochodu jeżeli zostanie sprzedanych co najmniej 213 kurtek.

Wyznacz dziedzinę i zbiór rozwiązań równania:

 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie: {premium}

 

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

Rozwiązujemy równanie:

 

  

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

Rozwiązujemy równanie:

 

  

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  

Wykres funkcji f(x) ...