Trygonometria i planimetria w zadaniach - matura-podstawowa - Baza Wiedzy

Zadania powtórzeniowe

Zadanie 1.

Wyznacz miarę kąta β jeśli $$α=142°$$.

img10

Obliczmy kąt obok Bety, jest to podstawa trójkąta równoramiennego stworzonego z promieni, więc:

$$180-142=38$$

$$38:2=19$$

img11

Wiemy, że styczna z okręgiem „styka się” pod kątem 90 stopni do promienia, zatem kąt

$$β=90-19=71°$$

Zadanie 2.

W trapezie równoramiennym jedna podstawa jest dwa razy dłuższa od drugiej, a ramiona mają długość równą długości krótszej podstawy. Znajdź miarę kąta ostrego trapezu.

Narysujmy sobie tę sytuację:

img12

Aby znaleźć miarę kąta ostrego, musimy mieć jeden z trzech czerwonych boków aby użyć trygonometrii:

img13

Możemy łatwo obliczyć najkrótszy to znów trapez równoramienny, więc po obu stronach musimy mieć w sumie $$2x-x=x$$ , zatem:

img14

Mając takie boki możemy użyć cosinusa:

$$cos α={0,5x}/x=0,5=1/2$$

A skoro

$$cos α=1/2$$

To:

$$α=60°$$

Zadanie 3.

Promień koła zwiększono o 25%, o ile zwiększyło się jego pole.

Promień i pole przed:

$$r$$

$$P=πr^2$$


Pole i promień po:

$$125%r={125}/{100} r=5/4 r$$

$$P=π(5/4 r)^2={25}/{16} πr^2$$

Zatem pole zostało zwiększone $${25}/{16}$$ krotnie.

 

Spis treści

Rozwiązane zadania
Narysuj dowolny wektor ...

 

 

 

 

   

 

Zaznacz na osi liczbowej zbiór rozwiązań

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7. 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 2/5.

 

 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7/5.

Włącz czynnik pod pierwiastek

Oblicz obwód i pole trapezu...

Rysunek poglądowy:

 

 

 

 

 

 

Obwód:

 

 

Pole:

 

Oblicz f(-2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Dane są zbiory A=(-∞;5),B=<a;9). Jeśli A∩B
Zatem:
Sporządź wykresy funkcji...

a) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są niedodatnie.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

 

b) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są nieujemne.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

Oblicz wartości pozostałych funkcji ...

 

 

 {premium}

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Prosta l jest styczna do okręgu ...

Przyjmijmy oznaczenia jak na rysunku. Zauważmy, że:

  

 

 

 

Trójkąt ROP jest trójkątem równoramiennym, ponieważ |OR|=|OP|.

Miary kątów przy podstawie PR są sobie równe i wynoszą 42o.

Korzystając z tw. o sumie miar kątów w trójkącie (dla trójkata ROP) obliczamy miarę kąta ß:

 

 

 

 

 

Odp: Cięciwa wyznacza kąt środkowy o mierze 96o.

Wyznacz równanie osi symetrii paraboli oraz współrzędne jej wierzchołka

Najpierw wyznaczymy miejsca zerowe (x₁ i x₂, następnie wyznaczymy równanie osi symetrii jako średnią arytmetyczną tych miejsc zerowych. Współrzędna x wierzchołka paraboli jest równa tyle, ile oś symetrii. Współrzędna y wierzchołka paraboli to z kolei wartość, jaką osiąga funkcja dla argumentu równego pierwszej współrzędnej wierzchołka paraboli)

 

 

 

 

 

 

 

 {premium}

 

 

   - współrzędne wierzchołka paraboli

   - równanie osi symetrii paraboli