Trójkąty podobne - matura-podstawowa - Baza Wiedzy

Zadania powtórzeniowe

Zadanie 1.

Znajdź trójkąt podobny do:

img05

Którego obwód jest równy 12.

Tutaj używamy cechy BBB. Pamiętamy, że k jest takie samo dla każdego boku więc będziemy dzielić każdy bok (obwód jest na bank mniejszy niż nasz obecny).

$$Obw={20}/k+{16}/k+{12}/k$$

$$12={20+16+12}/k$$

$$12={48}/k$$

$$k=4$$

Skoro dzielimy przez k, również boki musimy podzielić:

$$A^' B^'={20}/4=5$$

$$B^' C^'={16}/4=4$$

$$A^' C^'={12}/4=3$$

Zadanie 2.

Znajdź długość odcinka x:

img06

Tutaj użyjemy cechy BKB, dlaczego?

Mamy kąty wierzchołkowe:

img07

A one są takie same.

Sprawdźmy więc proporcjonalność boków.

$$k=6/3=4/2=2$$

Zatem już wiemy, że są podobne.

Zatem skoro 12 jest dwukrotnie większe od $x$ to nasze $$x=6$$.

Zadanie 3.

Trójkąty ABC i DEF są podobne, znajdź obwód trójkąta DF.

img08

Tutaj także użyjemy cechy BBB, ponieważ trójkąty są podobne, pozostaje obliczyć k:

$$k={|DF|}/{|AC|} ={36}/9=4$$

Zatem mnożymy przez 4 każdy bok:

$$|BC|=10×4=40$$

$$|AB|=11×4=44$$

Pozostaje obwód:

$$Obw=44+40+36=120$$

Spis treści

Rozwiązane zadania
Narysuj dowolny wektor ...

 

 

 

 

   

 

Zaznacz na osi liczbowej zbiór rozwiązań

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7. 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 2/5.

 

 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7/5.

Włącz czynnik pod pierwiastek

Oblicz obwód i pole trapezu...

Rysunek poglądowy:

 

 

 

 

 

 

Obwód:

 

 

Pole:

 

Oblicz f(-2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Dane są zbiory A=(-∞;5),B=<a;9). Jeśli A∩B
Zatem:
Sporządź wykresy funkcji...

a) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są niedodatnie.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

 

b) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są nieujemne.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

Oblicz wartości pozostałych funkcji ...

 

 

 {premium}

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Prosta l jest styczna do okręgu ...

Przyjmijmy oznaczenia jak na rysunku. Zauważmy, że:

  

 

 

 

Trójkąt ROP jest trójkątem równoramiennym, ponieważ |OR|=|OP|.

Miary kątów przy podstawie PR są sobie równe i wynoszą 42o.

Korzystając z tw. o sumie miar kątów w trójkącie (dla trójkata ROP) obliczamy miarę kąta ß:

 

 

 

 

 

Odp: Cięciwa wyznacza kąt środkowy o mierze 96o.

Wyznacz równanie osi symetrii paraboli oraz współrzędne jej wierzchołka

Najpierw wyznaczymy miejsca zerowe (x₁ i x₂, następnie wyznaczymy równanie osi symetrii jako średnią arytmetyczną tych miejsc zerowych. Współrzędna x wierzchołka paraboli jest równa tyle, ile oś symetrii. Współrzędna y wierzchołka paraboli to z kolei wartość, jaką osiąga funkcja dla argumentu równego pierwszej współrzędnej wierzchołka paraboli)

 

 

 

 

 

 

 

 {premium}

 

 

   - współrzędne wierzchołka paraboli

   - równanie osi symetrii paraboli