Rysowanie wykresu funkcji liniowej - matura-podstawowa - Baza Wiedzy

Rysowanie wykresu funkcji liniowej

Na początek przypomnienie, czyli wzór ogólny funkcji liniowej:

$$y=ax+b$$

gdzie:

a,b – współczynniki liczbowe

x,y – punkty w układzie współrzędnych

Każdemu kto chce narysować linię prostą w konkretnym miejscu wystarczą tylko dwa punkty. Stosujemy to często przy różnych pracach typu wycinanie desek, odmierzając odpowiednią ilość drewna i zaznaczając linią kawałek do ucięcia.

Tak samo tutaj potrzebujemy tylko dwóch dowolnych punktów, jeśli znamy wzór, czyli musimy wybrać dowolny x i obliczyć dla niego y. Ważne przy wyborze x jest, aby jak najłatwiej policzyć y.
 

Uwaga!


Możemy potrzebować więcej punktów jeśli będziemy rysować na przedziałach, lecz o tym napiszemy później.

Do wykresu potrzebujemy wzoru funkcji, tabeli punktów i układu współrzędnych.

Objaśnijmy wszystko na przykładzie:

Narysuj wykres funkcji $$y=3x+1$$.

Mamy już wzór podany, musimy stworzyć tabelę dwóch punktów, jak ona wygląda?

Wiersz nr 1 oznacza wartość osi X punktu, a wiersz nr 2 to wartość osi Y punktu, zatem każda kolumna to jeden punkt na układzie współrzędnych:

tab1

Wybieram dwie dowolne (ale łatwe) wartości x: 0,1

tab2

Następnie musimy obliczyć y dla naszych x:

tab3

Mamy już dwa potrzebne punkty, które odczytujemy z tabelki. Nazwijmy je A i B: A(0;1) i B(1;4).

Musimy je zaznaczyć w układzie współrzędnych:

Pusty układ:

ukl1

Zaznaczam punkt A szukając 0 na osi X i 1 na osi Y. Kółko jest naszym punktem A:

ukl2

W ten sam sposób robimy z punktem B:

ukl3

Ostatecznie łączymy te dwa punkty, pamiętając by linię prostą przeciągnąć najlepiej w pobliżu granic układu współrzędnych (pamiętajmy, że prosta w matematyce jest nieskończona).

ukl4
 

Rysowanie wykresu funkcji liniowej na zadanym przedziale

Przedział najprościej mówiąc jest to zakres liczb na osi x, dla których mamy narysować wykres. Nie możemy machnąć prostej na desce, a następnie na stole, podłodze itd. wydłużając ją w nieskończoność. - Tak samo tutaj będziemy działać na ograniczonym obszarze. Przedział może być otwarty lub domknięty.

Przedział otwarty oznacza, że kraniec przedziału czyli ostatnia liczba nie należy już do przedziału. W zapisie oznaczamy go symbolami nawiasu ( lub ) a na wykresie jako niezamalowane kółko.

Przedział domknięty oznacza, że kraniec przedziału czyli ostatnia liczba należy do przedziału. W zapisie oznaczamy go symbolami < lub >, a na wykresie jako zamalowane kółko.

Najczęściej funkcje określone na jednym przedziale jednym wzorem, a na drugim przedziale drugim wzorem, opisujemy tak jak na przykładzie:


Przykład:

Narysuj wykres:

zad1

Musimy rozpatrzeć osobno każdy z tych wzorów i po prostu narysować dwa wykresy na jednym układzie współrzędnych.

Zacznijmy od:

$$y=x+2$$

Rysujemy tabelkę z dwoma punktami, zwróćmy uwagę na dostępne x! Tutaj możemy mieć x<-1, więc musimy brać nasze x mniejsze od -1:
 

Uwaga!


Warto wziąć jako jeden punkt kraniec przedziału nawet jeśli nie należy on do przedziału (przedział otwarty), ułatwi to rysowanie wykresu.

tab1

I obliczamy y

tab2

Zatem

tab6

Teraz weźmy w obroty drugi wzór: $$y=1/2 x-1$$

Pamiętamy, że tutaj przedział jest $$x≥-1$$

tab4

Zatem:

tab5

Mamy więc tabelki, przejdźmy do wykresu, narysujmy tabelki:

tabelka 1. tab6
tabelka 2. tab5

Zatem wykres do tabelki 2. :

wyk1
Mamy tutaj przedział domknięty, zatem kółko zamalowane. Teraz wykres wspólny obu tabelek:

wyk2
Zwracam uwagę na otwarte kółko, ponieważ -1 do pierwszego przedziału nie należy.
 

Zadania powtórzeniowe

Zadanie 1.

Narysuj wykres funkcji $$y=-x+3$$.

Tabelka:

tab1

Teraz podstawiamy nasze x w $$y=-x+3$$

tab2

ostatecznie:

tab3

Punkty wędrują na układ współrzędnych i przeprowadzamy prostą.

wyk11

Zadanie 2.

Narysuj wykres funkcji zad2

Tworzymy tabelki dla każdego z osobna: Najpierw $$y=x+2$$, pamiętamy o warunkach nieprzekraczania przedziału.
tab1

Ostatecznie:

tab2

Druga część, czyli $$y=-x+2$$:

tab3
Teraz odpowiednio rysujemy wykres funkcji:

wyk1

Spis treści

Rozwiązane zadania
Jeden z boków prostokąta ma długość 18 cm ...

 

Oznaczmy długość szukanego boku przez x. Aby prostokąty były podobne, musi być prawdziwa

jedna z proporcji:

   

  

Długość drugiego boku powinna być równa 12 cm lub 27 cm.

 

 Obliczmy jaką długość ma przekątna pierwszego prostokąta: 

 

Stosunek długości przekątnej pierwszego prostokąta do długości przekątnej drugiego prostokąta: 

 

Sprawdźmy, czy stosunek długości któregoś z boków pierwszego prostokąta do długości 20 cm boku drugiego prostokąta wynosi `4/5` 

Prostokąty są więc podobne, a skala podobieństwa wynosi `4/5` 

 

Obliczmy obwód pierwszego prostokąta: 

 

Obliczmy jaką długość ma przekątna większego prostokąta: 

 

Stosunek długości przekątnych także jest równy skali podobieństwa, oznaczmy długośc przekątnej mniejszego prostokąta przez y:


`3sqrt41*2=3y\ \ \ |:3` 

Wyznacz punkty wspólne wykresów ...

 

 

  

      

  

 

 

 

    

  

  

 

 

 

 

 

 

 

 

Naszkicuj wykres dowolnej funkcji...

a) Wykres:

 

b) Wykres:

 

Funkcje fg mają takie samo miejsce zerowe.

 

Funkcje fh przecinają się w tym samym punkcie z osią y.

 

Wszystkie funkcje mają taką samą dziedzinę i zbiór wartości.

Nierówność spełniają:

Odpowiedź A jest fałszywa, ponieważ np. liczba  jest mniejsza od  ale  {premium}

Odpowiedź B jest fałszywa np. z tego samego powodu, co A.

Odpowiedź C jest fałszywa np. z tego samego powodu, co A.


Prawidłowa odpowiedź to D.

Podaj przykłady liczb niewymiernych, których:

a)

b)

Jakim liczbom odpowiadają punkty zaznaczone na osi?

Aby obliczyć jednostkę, odejmujemy od wybranej większej zaznaczonej liczby mniejszą zaznaczoną liczbę i dzielimy na ilość odcinków jednostkowych znajdujących się między tymi liczbami. 

 

 

 

 

 {premium}

 

 

 

 

 

 

 `-3 +9/7=-3+1 2/7=` `=-1 5/7` 

 

 

 

 

 `4/3=1 1/3` 

 `3 6/15-1 5/15=` `2 1/15` 

 `3 2/5+8/3=` `3 2/5+2 2/3=` 

 `5 16/15=6 1/15` 

 `7 6/15+1 5/15=` `8 11/15` 

 

 

 

 `(1 5/11+2/11)/3=` `1 7/11:3=` `18/11*1/3=6/11` 

 

 

 `1 5/11+12/11=` `1 5/11+1 1/11=` `2 6/11` 

 

W tabeli podano długości

Długość połowy obwodu różni się od liczby pi o mniej niż 0,01 dla dwóch ostatnich wielokątów (wyniki zostały podkreślone). 

 

Kurtki uszyte w zakładzie krawieckim...

a) Skoro kurtka jest sprzedawana po 190 zł a koszt jej produkcji to 110 zł to znaczy, że dochód z każdej sprzedanej kurtki wynosi 80 zł. Zatem wzór funkcji to:

 

 

b) Sprawdźmy dla jakiego x wartość funkcji będzie dodatnia:

 

 

 

 

 

 

Odpowiedź: Szycie kurtek zacznie przynosić zyski jeżeli zostanie sprzedanych co najmniej 188 kurtek.

 

c) Sprawdźmy kiedy wartość funkcji będzie większa bądź równa 2000.

 

 

 

 

 

Odpowiedź: Szycie kurtek wygeneruje 2000 zł dochodu jeżeli zostanie sprzedanych co najmniej 213 kurtek.

Wyznacz dziedzinę i zbiór rozwiązań równania:

 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie: {premium}

 

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

Rozwiązujemy równanie:

 

  

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

Rozwiązujemy równanie:

 

  

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  

Wykres funkcji f(x) ...