Rysowanie wykresu funkcji liniowej - matura-podstawowa - Baza Wiedzy

Rysowanie wykresu funkcji liniowej

Na początek przypomnienie, czyli wzór ogólny funkcji liniowej:

$$y=ax+b$$

gdzie:

a,b – współczynniki liczbowe

x,y – punkty w układzie współrzędnych

Każdemu kto chce narysować linię prostą w konkretnym miejscu wystarczą tylko dwa punkty. Stosujemy to często przy różnych pracach typu wycinanie desek, odmierzając odpowiednią ilość drewna i zaznaczając linią kawałek do ucięcia.

Tak samo tutaj potrzebujemy tylko dwóch dowolnych punktów, jeśli znamy wzór, czyli musimy wybrać dowolny x i obliczyć dla niego y. Ważne przy wyborze x jest, aby jak najłatwiej policzyć y.
 

Uwaga!


Możemy potrzebować więcej punktów jeśli będziemy rysować na przedziałach, lecz o tym napiszemy później.

Do wykresu potrzebujemy wzoru funkcji, tabeli punktów i układu współrzędnych.

Objaśnijmy wszystko na przykładzie:

Narysuj wykres funkcji $$y=3x+1$$.

Mamy już wzór podany, musimy stworzyć tabelę dwóch punktów, jak ona wygląda?

Wiersz nr 1 oznacza wartość osi X punktu, a wiersz nr 2 to wartość osi Y punktu, zatem każda kolumna to jeden punkt na układzie współrzędnych:

tab1

Wybieram dwie dowolne (ale łatwe) wartości x: 0,1

tab2

Następnie musimy obliczyć y dla naszych x:

tab3

Mamy już dwa potrzebne punkty, które odczytujemy z tabelki. Nazwijmy je A i B: A(0;1) i B(1;4).

Musimy je zaznaczyć w układzie współrzędnych:

Pusty układ:

ukl1

Zaznaczam punkt A szukając 0 na osi X i 1 na osi Y. Kółko jest naszym punktem A:

ukl2

W ten sam sposób robimy z punktem B:

ukl3

Ostatecznie łączymy te dwa punkty, pamiętając by linię prostą przeciągnąć najlepiej w pobliżu granic układu współrzędnych (pamiętajmy, że prosta w matematyce jest nieskończona).

ukl4
 

Rysowanie wykresu funkcji liniowej na zadanym przedziale

Przedział najprościej mówiąc jest to zakres liczb na osi x, dla których mamy narysować wykres. Nie możemy machnąć prostej na desce, a następnie na stole, podłodze itd. wydłużając ją w nieskończoność. - Tak samo tutaj będziemy działać na ograniczonym obszarze. Przedział może być otwarty lub domknięty.

Przedział otwarty oznacza, że kraniec przedziału czyli ostatnia liczba nie należy już do przedziału. W zapisie oznaczamy go symbolami nawiasu ( lub ) a na wykresie jako niezamalowane kółko.

Przedział domknięty oznacza, że kraniec przedziału czyli ostatnia liczba należy do przedziału. W zapisie oznaczamy go symbolami < lub >, a na wykresie jako zamalowane kółko.

Najczęściej funkcje określone na jednym przedziale jednym wzorem, a na drugim przedziale drugim wzorem, opisujemy tak jak na przykładzie:


Przykład:

Narysuj wykres:

zad1

Musimy rozpatrzeć osobno każdy z tych wzorów i po prostu narysować dwa wykresy na jednym układzie współrzędnych.

Zacznijmy od:

$$y=x+2$$

Rysujemy tabelkę z dwoma punktami, zwróćmy uwagę na dostępne x! Tutaj możemy mieć x<-1, więc musimy brać nasze x mniejsze od -1:
 

Uwaga!


Warto wziąć jako jeden punkt kraniec przedziału nawet jeśli nie należy on do przedziału (przedział otwarty), ułatwi to rysowanie wykresu.

tab1

I obliczamy y

tab2

Zatem

tab6

Teraz weźmy w obroty drugi wzór: $$y=1/2 x-1$$

Pamiętamy, że tutaj przedział jest $$x≥-1$$

tab4

Zatem:

tab5

Mamy więc tabelki, przejdźmy do wykresu, narysujmy tabelki:

tabelka 1. tab6
tabelka 2. tab5

Zatem wykres do tabelki 2. :

wyk1
Mamy tutaj przedział domknięty, zatem kółko zamalowane. Teraz wykres wspólny obu tabelek:

wyk2
Zwracam uwagę na otwarte kółko, ponieważ -1 do pierwszego przedziału nie należy.
 

Zadania powtórzeniowe

Zadanie 1.

Narysuj wykres funkcji $$y=-x+3$$.

Tabelka:

tab1

Teraz podstawiamy nasze x w $$y=-x+3$$

tab2

ostatecznie:

tab3

Punkty wędrują na układ współrzędnych i przeprowadzamy prostą.

wyk11

Zadanie 2.

Narysuj wykres funkcji zad2

Tworzymy tabelki dla każdego z osobna: Najpierw $$y=x+2$$, pamiętamy o warunkach nieprzekraczania przedziału.
tab1

Ostatecznie:

tab2

Druga część, czyli $$y=-x+2$$:

tab3
Teraz odpowiednio rysujemy wykres funkcji:

wyk1

Spis treści

3 szkoły podstawowej
4 szkoły podstawowej
5 szkoły podstawowej
6 szkoły podstawowej
7 szkoły podstawowej
II gimnazjum
III gimnazjum
Matura podstawowa
Matura rozszerzona
Rozwiązane zadania
Zaznacz liczby parzyste

Jeśli liczbę da się zapisać w postaci: 

`2*("coś")`

gdzie "coś" jest liczbą naturalną, to jest to liczba parzysta. 

Jeśli natomiast liczbę da się zapisać jako:

`2*("coś")+1`

to jest to liczba nieparzysta.

 

Liczby a i b już są w takiej postaci, zajmijmy sie następnymi liczbami:

`c=2n+3=2n+2+1=2(n+1)+1`

`d=4n+2=2(2n+1)`

`e=4n+3=4n+2+1=2(2n+1)+1`

`g=(4n-1)-(2n-3)=4n-1-2n+3=2n+2=2(n+1)`

`h=(4n-1)-2(n-3)=4n-1-2n+6=2n+5=2n+4+1=2(n+2)+1`

 

 

Możemy teraz rozwiązać zadanie:

`ul(a=2n)\ \ \ \ \ \ \ \ \ \ ul(ul(c=2n+3))\ \ \ \ \ \ ul(ul(e=4n+3))\ \ \ \ \ \ \ ul(g=(4n-1)-(2n-3))`

`ul(ul(b=2n+1))\ \ \ \ \ ul(d=4n+2)\ \ \ \ \ ul(f=2(2n+1))\ \ \ \ \ ul(ul(h=(4n-1)-2(n-3)))`

Oceń wartość logiczną zdania.

a) fałsz

b) prawda

c) fałsz

Wśród poniższych wypowiedzi wskaż zdania

`a)`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe. 

 

`b)`

Nie jest to zdanie - wypowiedź jest pytaniem, a nie wypowiedzią oznajmującą.

 

`c)`

Jest to zdanie - możemy stwierdzić, że jest ono prawdziwe.

 

`d)`

Nie jest to zdanie - dla różnych x przyjmuje ono różną wartość logiczną, np. dla 3 jest prawdziwe, ale dla 2 jest nieprawdziwe.

 

`e)`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe.

 

`f)\`

`(-100)^3=-100*(-100)*(-100)=-1\ 000\ 000`

`-100^3=-1*100^3=-1*100*100*100=-1\ 000\ 000`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe. 

 

`g)`

Nie jest to zdanie - na końcu znajduje się wykrzynik. 

 

`h)`

Jest to zdanie - możemy stwierdzić, że jest ono prawdziwe.

Podaj przykład takich dwóch zdań p oraz q

Alternatywa będzie prawdziwa, jeśli przynajmniej jedno ze zdań p, q będzie prawdziwe, natomiast koniunkcja będzie fałszywa, jeśli przynajmniej jedno ze zdań p, q będzie fałszywe. Musimy więc podać przykład takich dwóch zdań, z których jedno jest prawdziwe, a drugie fałszywe. 

Poniżej podajemy kilka takich przykładów:

 

`a)`

`p:\ \ 2inN\ \ \ \ \ w(p)=1`

`q:\ \ piinW\ \ \ \ w(q)=0`

 

 

`b)`

`p:\ \ NWD(1,7)=7\ \ \ \ w (p)=0`

`q:\ \ 2>1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ w(q)=1`

 

 

`c)`

`p:\ \ "Polska leży w Europie"\ \ \ w(p)=1`

`q:\ \ "Opole to stolica Polski"\ \ \ w(q)=0`

 

Wiadomo, że prawdziwe są zdania p∨q

Alternatywy p∨q i p∨(¬q) różnią się tylko drugim zdaniem. Jeśli zdanie q jest prawdziwe, to zdanie ¬q jest nieprawdziwe, natomiast jeśli zdanie q jest nieprawdziwe, to zdanie ¬q jest prawdziwe - zawsze jedno ze zdań ¬q ma wartość logiczną 0. 

Zatem zdanie p nie może być fałszywe, bo wtedy któraś alternatywa byłaby fałszywa (oba zdania proste tworzące jedną alternatywę byłyby fałszywe), stąd wniosek, że wartość logiczna zdania p wynosi 1. 

 

`w(p)=1\ \ \ =>\ \ \ w(notp)=0\ \ \ =>\ \ \ w((#(notp)^0)wedgeq)=0`

Niezależnie od tego, jaką wartość logiczną przyjmuje zdanie q, wartość logiczna zdania (¬p)∧q wynosi 0, ponieważ pierwsze zdanie (¬p) jest fałszywe, więc koniunkcja jest fałszywa. 

Zapisz liczbę w postaci 3k, 3k+1 lub 3k+2

`a)\ 26=3*8+2`

`b)\ 76=3*25+1`

`c)\ 108=3*36`

`d)\ 127=3*42+1`

`e)\ 713=3*237+2`

Zapisz liczby w postaci

`a)` 

Zamienimy część ułamkową wyrażoną ułamkiem okresowym na ułamek zwykły. 

Mnożymy ułamek razy 10 do tej potęgi, jaką długość ma okres - u nas mnożymy przez 10 do potęgi pierwszej (czyli przez 10).

`\ \ \ x=0,777...` 

`10x=7,777...` 

`10x-x=7,777...-0,777...` 

`9x=7\ \ \ |:9` 

`x=7/9` 

Zapisujemy liczbę w postaci ułamka zwykłego:

`-2,(7)=-2 7/9=-25/9`  

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ x=0,888...` 

`10x=8,888...` 

`10x-x=8,888...-0,888...` 

`9x=8\ \ \ |:9` 

`x=8/9` 

 

`-7,(8)=-7 8/9=-71/9` 

 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

`\ \ \ x=0,2666...` 

`10x=2,6666...` 

`10x-x=2,6666...-0,2666...` 

`9x=2,4 \ \ |:9` 

`x=(2,4)/9=(0,8)/3=8/30=4/15`  

 

`1,2(6)=1 4/15=19/15` 

`ul(ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))`      

 

 

`b)` 

`\ \ \ \ x=0,05454...` 

`100x=5,45454...` 

`100x-x=5,45454...-0,05454...`  

`99x=5,4\ \ \ |:99` 

`x=(5,4)/99=(0,6)/11=6/110=3/55` 

 

`3,0(54)=3 3/55=168/55` 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ \ \ x=0,324324...` 

`1000x=324,324324...` 

`1000x-x=324,324324...-0,324324...` 

`999x=324\ \ \ |:999` 

`x=324/999=108/333=36/111` 

 

`-2,(324)=-2 36/111=-258/111` 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ \ \ x=0,0135135...` 

`1000x=13,5135135...` 

`1000x-x=13,5135135...-0,0135135...` 

`999x=13,5\ \ \ |:999` 

`x=(13,5)/999=(1,5)/111=15/1110=3/222` 

 

`8,0(135)=8 3/222=1779/222` 

Nie wykonując dzielenia podaj, które spośród liczb
  • Aby liczba dzieliła się przez 15 musi dzielić się przez 3 i przez 5, co oznacza, że suma jej cyfr musi byc liczbą podzielną przez 3 oraz jej ostatnią cyfrą musi być 0 lub 5. 
  • Aby liczba dzieliła się przez 45, musi dzielić się przez 9 i przez 5, co oznacza, że suma jej cyfr musi być liczbą podzielną przez 9 oraz jej ostatnią cyfrą musi być 0 lub 5
  • Aby liczba dzieliła się przez 75, musi dzielić się przez 3 i przez 25, co oznacza, że suma jej cyfr musi być liczbą podzielną przez 3 oraz jej dwie ostatnie cyfry to 00, 25, 50 lub 75. 

 

`a)`

`1+1+5+5=12`

 

Liczba 1155 jest podzielna przez 15. 

 

`b)`

`9+8+2+5=24`

Liczba 9825 jest podzielna przez 15 i 75. 

 

`c)`

`5+1+6+5=17`

Liczba 5165 nie jest podzielna przez 15, 45 ani 75.

 

 

`d)`

`8+2+3+5=18`

Liczba 8235 jest podzielna przez 15 i 45.

 

Utwórz zaprzeczenie zdania i oceń jego wartość

a)

Zaprzeczenie zdania:

Liczba 6 nie jest liczbą parzystą.

Wartość logiczna zaprzeczenia:

Fałsz.

 

b)

Zaprzeczenie zdania:

Liczba 17 nie jest podzielna przez 3.

Wartość logiczna zaprzeczenia:

Prawda.

 

c)

Zaprzeczenie zdania:

`5<=7`

Wartość logiczna zaprzeczenia:

Prawda.

 

d)

Zaprzeczenie zdania:

`0>3`

Wartość logiczna zaprzeczenia:

Fałsz

 

e)

Zaprzeczenie zdania:

`13-9!=5`

Wartość logiczna zaprzeczenia:

Prawda.

 

f)

Zaprzeczenie zdania:

`pi>=3`

Wartość logiczna zaprzeczenia:

Prawda.

 

g)

Zaprzeczenie zdania:

`7/17=1`

Wartość logiczna zaprzeczenia:

Fałsz

 

h)

Zaprzeczenie zdania:

`14/16!=2/3`

Wartość logiczna zaprzeczenia:

Prawda.

 

Podaj najmniejszą dodatnią liczbę naturalną podzielną przez

`a)\ 24`

`b)\ 60`

`c)\ 144`

`d)\ 120`