Równanie prostej przechodzącej przez dwa punkty - matura-podstawowa - Baza Wiedzy - Odrabiamy.pl

Równanie prostej przechodzącej przez dwa punkty - matura-podstawowa - Baza Wiedzy

Zadania powtórzeniowe

Zadanie 1.

Wyznacz wzór kierunkowy prostej przechodzącej przez A(3;2) , B(0;5)

Korzystamy ze wzoru:
$(x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1)$

Podstawiamy punkty:
$(0-3)(y-2)=(5-2)(x-3)$

Następnie obliczamy różnice:
$-3(y-2)=3(x-3)$

Wymnażamy nawiasy:
$-3y+6=3x-9$

Mamy wyznaczyć wzór kierunkowy, zatem po lewej ma zostać samo $y$:
$-3y=3x-9-6$ $|:$ $(-3)$
$y=-x+3+2$
$y=-x+5$
 

Zadanie 2.

Wyznacz wzór ogólny prostej przechodzącej przez punkty A(2,3) ,B(-2,0).

Korzystamy ze wzoru:
$(x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1)$

I podstawiamy:
$(-2-2)(y-3)=(0-3)(x-2)$
$-4(y-3)=-3(x-2)$

I wymnażamy
$-4y+12=-3x+6 $

Z racji, że chcemy dostać wzór ogólny, po prawej stronie musi pozostać tylko 0.
$-4y+12+3x-6=0$
$3x-4y+6=0$

Zadanie 3.

Wyznacz wzór kierunkowy prostej przechodzącej przez punkty A(3;8), B(-2;-2). Sprawdź czy punkt C (0;3) należy do tej prostej.

Standardowo zaczynamy od wzoru i podstawiania:
$(x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1)$
$(-2-3)(y-8)=(-2-8)(x-3)$
$-5(y-8)=-10(x-3)$
$-5y+40=-10x+30$
$-5y=-10x-10$

Potrzebujemy kierunkowej zatem musi wyliczyć $y$:
$-5y=-10x-10$ $|: (-5)$
$y=2x+2$

Sprawdzamy teraz czy punkt C(0;3) należy do prostej podstawiając pod x,y odpowiednie współrzędne:
$y=2x+2$
$3=2×0+2$
$3=2$

Jest to równanie sprzeczne, zatem punkt C nie należy do naszej prostej.

Spis treści

Rozwiązane zadania
Z podanych wzorów wyznacz a:

 

      {premium}

 


 

 

 

 


 

 

 


 

 

 

 

W trójkącie równoramiennym o polu...

Przyjmijmy oznaczenia jak na rysunku poniżej:


Mamy dane:

 



a) Z tw. Pitagorasa wyznaczamy a:

 {premium}

 

 

 

 


Ze wzoru na pole trójkąta wyznaczamy x:

 

 

 

 


Obliczamy obwód trójkąta:

 

 


Odp. Obwód trójkąta jest równy 32 cm.



b) Ze wzoru na pole wyznaczamy wysokość h:

 

 

 

 


Obliczamy wysokość opuszczoną na podstawę:

 


Odp. Wysokości trójkąta są równe 8 cm, 9,6 cm, 9,6 cm



c) Ze wzoru na pole obliczamy promień r okręgu wpisanego w trójkąt:

 

 

 

 


Odp. Promień okręgu wpisanego w trójkąt ma długość 3 cm.

Narysuj wykres przykładowej funkcji...

Przykładowy wykres funkcji. Krańce dziedziny zaznaczamy otwartymi kółeczkami gdyż nie należą do niej. Funkcja nie może przyjmować wartości większych od 4 i mniejszych od 2.

{premium}

Doprowadź wyrażenia do najprostszej postaci...

 

 

Wykonaliśmy dzielenie, więc koniecznie musimy założyć, że dzielnik jest różny od zera. Stąd:

 

 

Obliczamy wartość wyrażenia dla  

 {premium}


 

 

Wykonaliśmy dzielenie, więc koniecznie musimy założyć, że dzielnik jest różny od zera. Stąd:

 

 

Obliczamy wartość wyrażenia dla  

 


 

 

 

Wykonaliśmy dzielenie, więc koniecznie musimy założyć, że dzielnik jest różny od zera. Stąd:

 

 

Obliczamy wartość wyrażenia dla  

 

 


 

 

Wykonaliśmy dzielenie, więc koniecznie musimy założyć, że dzielnik jest różny od zera. Stąd:

 

 

 

 

Obliczamy wartość wyrażenia dla 

 

Na rysunku obok przedstawiono...

Funkcje y=x3+2x2 i y=-x3+2x2 są symetryczne względem osi{premium} y, zatem

wykres funkcji y=-x3+2xprzedstawiono na wykresie B.

Odp.: B

Dane są wektory...

{premium}

 

Wyłącz wspólny czynnik poza nawias

 

{premium}  

 

 

 

  

 

 

   

Na podstawie wykresu funkcji f...

Wykres funkcji f otrzymamy po przesunięciu wykresy funkcji h(x)=x2 równolegle o wektor [1, 0].

Rysujemy wykres funkcji f w danym przedziale.{premium}

Na podstawie wykresu funkcji f rysujemy wykres funkcji g.


 

 


 

Wyznacz liczbę, której 15% jest liczbą...

 szukana liczba


Zdanie "liczby  jest liczbą o  mniejszą niż liczby " możemy zapisać równaniem: {premium}

 


Wyznaczamy z równania  

 

 

 

 

 


Odp. Szukana liczba to  

 

 

Wykaż, że suma promienia okręgu opisanego na...

Przyjmijmy oznaczenia jak na rysunku poniżej:

Thumb zad5.111str125


Mamy:

 przyprostokątne

 przeciwprostokątna


Wówczas promienie okręgów wpisanego i opisanego na trójkącie dane są wzorami:

 {premium}

 


Obliczamy sumę tych promieni:

 


 to średnia arytmetyczna przyprostokątnych, zatem pokazaliśmy, że suma długości promieni

jest średnią arytmetyczną długości przyprostokątnych, co należało dowieść.