Obliczenia procentowe - matura-podstawowa - Baza Wiedzy - Odrabiamy.pl

Obliczenia procentowe - matura-podstawowa - Baza Wiedzy

Obliczanie procentu liczby

Posiadając procent danej liczby wystarczy pomnożyć liczba razy procent, aby uzyskać wartość tego procentu. Pokażemy dwa sposoby na rozwiązanie poniższego przykładu.

Przykład:

Przykład: Komputer kosztował 1500zł, w sklepie nastały czasy promocji, więc obniżono jego cenę o 20%. Ile kosztuje teraz?

  • Sposób I

    Liczymy ile wynosiła obniżka, część obliczamy mnożąc procent i całość:

    $20%*1500$

    Pamiętamy, że procent to ułamek o mianowniku 100

    ${20}/{100}×1500$

    Skracamy w mnożeniu, więc skróćmy 1500 i 100 przez 100

    ${20}/{1}×15=300$

    Znamy obniżkę, więc odejmujemy ją od ceny pierwotnej

    $1500-300=1200$

    Odp.: Komputer po obniżce kosztuje 1200zł
     

  • Sposób II

    Liczymy od razu cenę po obniżce, skoro całość to 100%, a obniżono o 20% to cena po obniżce to 80% liczby

    Liczymy więc tak samo jak w pierwszym

    $ 80%×1500 $

    $ {80}/{100}×1500 $

    Znów skracamy przez 100

    $ {80}/{1}×15=1200$

Obliczanie liczby mając procent i część

W tym przypadku liczymy całą liczbę, posiadając jedynie procent i jego wartość (część tej liczby).

Przykład:

Komputer po 30% obniżce kosztuje 910zł. Ile kosztował przed obniżeniem ceny?

Tym razem musimy wprowadzić niewiadomą:

x - cena przed obniżką, czyli nasza całość

Pamiętamy, że 30% jest naszą obniżką, zatem 910zł to 70% ceny.

$70%×x=910$ -> trzeba było pomnożyć przez 70% razy naszą całość, aby uzyskać 910zł. Pozostaje nam znaleźć całość:

${70}/{100}×x=910$ $|×100$

$70x=91000$ $|:70$

$x=1300$

Odp.: Komputer kosztował 1300zł.
 

Obliczanie obniżki/podwyżki ceny

Zacznijmy od obniżek:

Przykład:

Komputer kosztował 1000zł po obniżce jego cena wynosi 750zł. O ile procent została obniżona cena?

Na początek obliczamy obniżkę:

$1000-750=250$

Tym razem nasze równanie wygląda tak:

$x%*1000=250$

Skróćmy przez 1000

$x%×1=x%=0,25$

Pamiętajmy, że % to ułamek o mianowniku 100

$x=25%$

Odp.: Obniżka wyniosła 25%.
 

Teraz podwyżka. Wzór na obliczanie podwyżki wygląda następująco:

$ ext"podwyżka" = { ext"cena po podwyżce" - ext"cena przed podwyżką"}/{ ext" cena przed podwyżką"} × 100% $

Przykład:

Benzyna kosztowała 5zł za litr. Niestety nadeszła fala podwyżek i cena wzrosła do 5zł 40gr. Oblicz o ile procent wzrosła cena.

Na początku zamiana:

5zł 40gr=5,4zł

Wystarczy, że podstawimy nasze liczby pod wzór:

$ ext"podwyżka" = { ext"cena po podwyżce" - ext"cena przed podwyżką"}/{ ext" cena przed podwyżką"} × 100% = { 5,4 - 5}/{5} × 100%=$
$={ 0,4}/{5}× 100%=8/{100}× 100%=8%$

Odp.: Podwyżka wyniosła 8%.
 

UWAGA! Obniżka i następnie podwyżka o tą samą kwotę nie dają takiej samej liczby!

Procent składany

Jest to zestawienie, które służy nam w finansach. Obliczamy dzięki niemu zyski z lokat.

Tym razem posłużymy się wzorem, lecz wpierw będziemy potrzebować:

  • kapitału
  • stopy procentowej
  • czasu trwania, czyli okresu oraz ich ilości

Używamy następującego wzoru

$K_n=K{(1+r/{100})}^n$

gdzie:

K - kapitał

r - stopa procentowa

n - ilość okresów
 

Przyjrzyjmy się na chwilę wartości n.

O ile łatwo można odczytać K i r tu trzeba chwilę pomyśleć.

Są lokaty np. 3 miesięczne i możemy je założyć na 3 lata.

Zatem musimy najpierw policzyć ile okresów lokaty (3 miesiące) mieści się podczas składania przez nas lokaty (3 lata), tak więc:

3lata=36miesięcy

$36÷3=12$ -> z tego wynika, że w tym przypadku n=12
 

Przejdźmy teraz do przykładu:

Pan Jan wpłacił 1000zł na 6-miesieczną lokatę o oprocentowaniu równym 2%. Oblicz ile będzie miał pieniędzy po 3 latach.

Napierw wypiszmy dane:

$K=1000zł$

$r=2$

teraz n

Okres to 6 miesięcy, czas to 3 lata, więc

3lata=36 miesięcy

$36÷6=6$ -> czyli n=6

Pozostaje podstawić do wzoru

$K_6=1000{(1+2/{100})}^6$

I obliczamy

$K_6=1000×{(1,02)}^6≈1126,16$
 

Uwaga!

Obniżka i następnie podwyżka o tą samą kwotę nie dają takiej samej liczby!
Wzór na procent składany jest w karcie wzorów maturalnych.

Zadania powtórzeniowe

Zadanie 1.

Rower kosztował 1200zł, cenę tą obniżono o 25%, a następnie podwyższono o tyle samo. Ile kosztuje rower teraz?

Najpierw liczymy cenę po obniżce.

Pamiętamy, że licząc cenę a nie obniżkę musimy odjąć procenty $100%-25%=75%$

Teraz liczymy już cenę

$75%*1200={75}/{100}×1200={75}/{1}×12=900$

Teraz liczymy podwyżkę, tak samo musimy dodać procenty, aby mieć cenę podwyższoną, teraz 900 jest naszym 100%

$100%+25%=125%$

$125%×900={125}/{100}×900={125}/1×9=1175$

Jak widać cena nie jest taka sama, rower kosztuje teraz 1175zł  

Zadanie 2.

Ania zmieszała 100g wody z 20g soli. Ile % soli znajduje się w tej miksturze?

Mamy tutaj mieszankę, więc mikstura ma razem $100+20=120g$

To jest najważniejsze w całym tym zadaniu, aby to zauważyć.

Teraz wystarczy obliczyć ile % całości zajmuje nasza sól.

x - procent objętości roztworu dla soli $x%×120=20$

$x/{100%}×120=20$ /×100%

$120x=2000%$ /÷120

$x≈16,6%$

Odp.: Sól zajmuję ok. $16,6%$ mikstury.

Zadanie 3.

Konrad dostał wypłatę 5000zł brutto, po odliczeniu 40% podatku postanowił wszystko pozostałe wpłacić na lokatę kwartalną na okres 2 lat. Oprocentowanie tej lokaty to 3%. Ile zarobi przez te 2 lata?

Najpierw musimy odliczyć podatek. Zamiast obliczać ile odjąć obliczmy ile mu zostało czyli:

$100%-40%=60%$

Obliczamy ile to jest 60% z 5000zł

$60%×5000={60}/{100}×5000={60}/1×50=3000zł $

Teraz nasza lokata.

Kapitał znamy:

$K=3000$ Procent też:

$r = 3%$ Pozostaje n

$n={2} ÷$ ${1}/{4}=2×4=8$ (okres to 1/4 roku, czas to 2 lata)

Podmieniamy we wzorze

$K_n=K{(1+r/{100})}^n$

$K_8=3000{(1+3/{100})}^8$

$K_8=3000{(1,03)}^8≈3800,31$
 

Spis treści

Rozwiązane zadania
Pole trójkąta o bokach długości...

Obliczamy połowę obwodu trójkąta:{premium}

 

Obliczamy pole trójkąta, korzystając ze wzoru Herona:

 

Prawidłowa odpowiedź to C.

Rozwiąż równanie

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Z dwóch plantacji truskawek w pierwszym roku...

Oznaczmy liczbę zebranych truskawek z pierwszej plantacji przez x oraz liczbę zebranych truskawek z drugiej plantacji przez y. Wtedy:

 

W drugim roku na pierwszej plantacji odnotowano 20% wzrost natomiast na drugiej 30% wzrost, łącznie zebrano 14,21 tony truskawek.

 

 

Rozwiążmy układ równań:

 

 

 

 

 

 

 

Podstawmy pod pierwsze równanie:

 

 

 

 

W pierwszym roku zebrano z pierwszej plantacji 10 ton truskawek a w roku drugim zebrano:

 

 

W pierwszym roku zebrano z drugiej plantacji 1,7 tony truskawek a w roku drugim zebrano:

 

Oblicz. W

 

 

 

 

 

 

 

 

 

Nie używając kalkulatora, oblicz wartość wyrażenia:

 {premium} 

Podpisz zbiory punktów

 

{premium}

 

  

 

Zapisz w postaci x^k

`a)\ (x^4*x^6)/(x^3*x^-5)=(x^(4+6))/(x^(3+(-5)))=x^10/x^-2=x^(10-(-2))=x^(10+2)=x^12`{premium}

Zbiorem wartości funkcji...

Funkcja g powstaje poprzez przesunięcie wykresu funkcji f o 3 jednostki w górę. Zbiór wartości funkcji to zbiór:

 

Widać, że funkcja jest stale większa od zera, zatem nie ma miejsc zerowych.

Wykaż, że czworokąt ABCD...

Rysunek poglądowy:

Jeżeli czworokąt ABCD ma być trapezem równoramiennym to trzeba pokazać, że odcinki AB i CD są równoległe i mają różne długości oraz długości ramion są równe.

Jeżeli odcinki są równoległe to wektory je zawierające muszą mieć ten sam kierunek, a więc jeżeli istnieje stała k taka, że:

 

to wektory są równoległe.

Zatem:

 

 

 

 

Porównajmy współrzędne wektorów:

 

 

A więc wektory są rownoległe, czyli odcinki AB i DC są podstawami trapezu.

 

Długości podstaw:

  

 

 

Ramiona trapezu:

 

 

 

 

 

 

A więc czworokąt jest trapezem równoramiennym gdyż ma dwie podstawy równoległe do siebie mające różne długości, natomiast jego ramiona mają równą długość.

Przez punkty M, N i K...

Styczna i promień są do siebie prostopadłe, łatwo zatem sobie wyobrazić, że przy wierzchołku leżącym na przeciwko kąta o mierze 120o będzie kąt o mierze:{premium}

 

Odejmujemy od kąta półpełnego miarę znanego nam kąta gdyż styczne z promieniami tworzą kąty proste. A więc za każdym razem powstaje nam czworokąt którego suma kątów wewnętrznych jest równa 360o a my znamy zawsze trzy z czterech miar.

 

Przy wierzchołku leżącym na przeciwko kąta prostego będzie kąt o mierze:

 

 

Suma miar kątów wewnętrznych w trójkącie jest równa 180o, zatem ostatni kąt ma miarę:

 

Odpowiedź C