Obliczenia procentowe - matura-podstawowa - Baza Wiedzy

Obliczanie procentu liczby

Posiadając procent danej liczby wystarczy pomnożyć liczba razy procent, aby uzyskać wartość tego procentu. Pokażemy dwa sposoby na rozwiązanie poniższego przykładu.

Przykład:

Przykład: Komputer kosztował 1500zł, w sklepie nastały czasy promocji, więc obniżono jego cenę o 20%. Ile kosztuje teraz?

  • Sposób I

    Liczymy ile wynosiła obniżka, część obliczamy mnożąc procent i całość:

    $$20%*1500$$

    Pamiętamy, że procent to ułamek o mianowniku 100

    $${20}/{100}×1500$$

    Skracamy w mnożeniu, więc skróćmy 1500 i 100 przez 100

    $${20}/{1}×15=300$$

    Znamy obniżkę, więc odejmujemy ją od ceny pierwotnej

    $$1500-300=1200$$

    Odp.: Komputer po obniżce kosztuje 1200zł
     

  • Sposób II

    Liczymy od razu cenę po obniżce, skoro całość to 100%, a obniżono o 20% to cena po obniżce to 80% liczby

    Liczymy więc tak samo jak w pierwszym

    $$ 80%×1500 $$

    $$ {80}/{100}×1500 $$

    Znów skracamy przez 100

    $$ {80}/{1}×15=1200$$

Obliczanie liczby mając procent i część

W tym przypadku liczymy całą liczbę, posiadając jedynie procent i jego wartość (część tej liczby).

Przykład:

Komputer po 30% obniżce kosztuje 910zł. Ile kosztował przed obniżeniem ceny?

Tym razem musimy wprowadzić niewiadomą:

x - cena przed obniżką, czyli nasza całość

Pamiętamy, że 30% jest naszą obniżką, zatem 910zł to 70% ceny.

$$70%×x=910$$ -> trzeba było pomnożyć przez 70% razy naszą całość, aby uzyskać 910zł. Pozostaje nam znaleźć całość:

$${70}/{100}×x=910$$ $$|×100$$

$$70x=91000$$ $$|:70$$

$$x=1300$$

Odp.: Komputer kosztował 1300zł.
 

Obliczanie obniżki/podwyżki ceny

Zacznijmy od obniżek:

Przykład:

Komputer kosztował 1000zł po obniżce jego cena wynosi 750zł. O ile procent została obniżona cena?

Na początek obliczamy obniżkę:

$$1000-750=250$$

Tym razem nasze równanie wygląda tak:

$$x%*1000=250$$

Skróćmy przez 1000

$$x%×1=x%=0,25$$

Pamiętajmy, że % to ułamek o mianowniku 100

$$x=25%$$

Odp.: Obniżka wyniosła 25%.
 

Teraz podwyżka. Wzór na obliczanie podwyżki wygląda następująco:

$$ ext"podwyżka" = { ext"cena po podwyżce" - ext"cena przed podwyżką"}/{ ext" cena przed podwyżką"} × 100% $$

Przykład:

Benzyna kosztowała 5zł za litr. Niestety nadeszła fala podwyżek i cena wzrosła do 5zł 40gr. Oblicz o ile procent wzrosła cena.

Na początku zamiana:

5zł 40gr=5,4zł

Wystarczy, że podstawimy nasze liczby pod wzór:

$$ ext"podwyżka" = { ext"cena po podwyżce" - ext"cena przed podwyżką"}/{ ext" cena przed podwyżką"} × 100% = { 5,4 - 5}/{5} × 100%=$$
$$={ 0,4}/{5}× 100%=8/{100}× 100%=8%$$

Odp.: Podwyżka wyniosła 8%.
 

UWAGA! Obniżka i następnie podwyżka o tą samą kwotę nie dają takiej samej liczby!

Procent składany

Jest to zestawienie, które służy nam w finansach. Obliczamy dzięki niemu zyski z lokat.

Tym razem posłużymy się wzorem, lecz wpierw będziemy potrzebować:

  • kapitału
  • stopy procentowej
  • czasu trwania, czyli okresu oraz ich ilości

Używamy następującego wzoru

$$K_n=K{(1+r/{100})}^n$$

gdzie:

K - kapitał

r - stopa procentowa

n - ilość okresów
 

Przyjrzyjmy się na chwilę wartości n.

O ile łatwo można odczytać K i r tu trzeba chwilę pomyśleć.

Są lokaty np. 3 miesięczne i możemy je założyć na 3 lata.

Zatem musimy najpierw policzyć ile okresów lokaty (3 miesiące) mieści się podczas składania przez nas lokaty (3 lata), tak więc:

3lata=36miesięcy

$$36÷3=12$$ -> z tego wynika, że w tym przypadku n=12
 

Przejdźmy teraz do przykładu:

Pan Jan wpłacił 1000zł na 6-miesieczną lokatę o oprocentowaniu równym 2%. Oblicz ile będzie miał pieniędzy po 3 latach.

Napierw wypiszmy dane:

$$K=1000zł$$

$$r=2$$

teraz n

Okres to 6 miesięcy, czas to 3 lata, więc

3lata=36 miesięcy

$$36÷6=6$$ -> czyli n=6

Pozostaje podstawić do wzoru

$$K_6=1000{(1+2/{100})}^6$$

I obliczamy

$$K_6=1000×{(1,02)}^6≈1126,16$$
 

Uwaga!

Obniżka i następnie podwyżka o tą samą kwotę nie dają takiej samej liczby!
Wzór na procent składany jest w karcie wzorów maturalnych.

Zadania powtórzeniowe

Zadanie 1.

Rower kosztował 1200zł, cenę tą obniżono o 25%, a następnie podwyższono o tyle samo. Ile kosztuje rower teraz?

Najpierw liczymy cenę po obniżce.

Pamiętamy, że licząc cenę a nie obniżkę musimy odjąć procenty $$100%-25%=75%$$

Teraz liczymy już cenę

$$75%*1200={75}/{100}×1200={75}/{1}×12=900$$

Teraz liczymy podwyżkę, tak samo musimy dodać procenty, aby mieć cenę podwyższoną, teraz 900 jest naszym 100%

$$100%+25%=125%$$

$$125%×900={125}/{100}×900={125}/1×9=1175$$

Jak widać cena nie jest taka sama, rower kosztuje teraz 1175zł  

Zadanie 2.

Ania zmieszała 100g wody z 20g soli. Ile % soli znajduje się w tej miksturze?

Mamy tutaj mieszankę, więc mikstura ma razem $$100+20=120g$$

To jest najważniejsze w całym tym zadaniu, aby to zauważyć.

Teraz wystarczy obliczyć ile % całości zajmuje nasza sól.

x - procent objętości roztworu dla soli $$x%×120=20$$

$$x/{100%}×120=20$$ /×100%

$$120x=2000%$$ /÷120

$$x≈16,6%$$

Odp.: Sól zajmuję ok. $$16,6%$$ mikstury.

Zadanie 3.

Konrad dostał wypłatę 5000zł brutto, po odliczeniu 40% podatku postanowił wszystko pozostałe wpłacić na lokatę kwartalną na okres 2 lat. Oprocentowanie tej lokaty to 3%. Ile zarobi przez te 2 lata?

Najpierw musimy odliczyć podatek. Zamiast obliczać ile odjąć obliczmy ile mu zostało czyli:

$$100%-40%=60%$$

Obliczamy ile to jest 60% z 5000zł

$$60%×5000={60}/{100}×5000={60}/1×50=3000zł $$

Teraz nasza lokata.

Kapitał znamy:

$$K=3000$$ Procent też:

$$r = 3%$$ Pozostaje n

$$n={2} ÷$$ $${1}/{4}=2×4=8$$ (okres to 1/4 roku, czas to 2 lata)

Podmieniamy we wzorze

$$K_n=K{(1+r/{100})}^n$$

$$K_8=3000{(1+3/{100})}^8$$

$$K_8=3000{(1,03)}^8≈3800,31$$
 

Spis treści

3 szkoły podstawowej
4 szkoły podstawowej
5 szkoły podstawowej
6 szkoły podstawowej
7 szkoły podstawowej
II gimnazjum
III gimnazjum
Matura podstawowa
Matura rozszerzona
Rozwiązane zadania
Zaznacz liczby parzyste

Jeśli liczbę da się zapisać w postaci: 

`2*("coś")`

gdzie "coś" jest liczbą naturalną, to jest to liczba parzysta. 

Jeśli natomiast liczbę da się zapisać jako:

`2*("coś")+1`

to jest to liczba nieparzysta.

 

Liczby a i b już są w takiej postaci, zajmijmy sie następnymi liczbami:

`c=2n+3=2n+2+1=2(n+1)+1`

`d=4n+2=2(2n+1)`

`e=4n+3=4n+2+1=2(2n+1)+1`

`g=(4n-1)-(2n-3)=4n-1-2n+3=2n+2=2(n+1)`

`h=(4n-1)-2(n-3)=4n-1-2n+6=2n+5=2n+4+1=2(n+2)+1`

 

 

Możemy teraz rozwiązać zadanie:

`ul(a=2n)\ \ \ \ \ \ \ \ \ \ ul(ul(c=2n+3))\ \ \ \ \ \ ul(ul(e=4n+3))\ \ \ \ \ \ \ ul(g=(4n-1)-(2n-3))`

`ul(ul(b=2n+1))\ \ \ \ \ ul(d=4n+2)\ \ \ \ \ ul(f=2(2n+1))\ \ \ \ \ ul(ul(h=(4n-1)-2(n-3)))`

Oceń wartość logiczną zdania.

a) fałsz

b) prawda

c) fałsz

Wśród poniższych wypowiedzi wskaż zdania

`a)`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe. 

 

`b)`

Nie jest to zdanie - wypowiedź jest pytaniem, a nie wypowiedzią oznajmującą.

 

`c)`

Jest to zdanie - możemy stwierdzić, że jest ono prawdziwe.

 

`d)`

Nie jest to zdanie - dla różnych x przyjmuje ono różną wartość logiczną, np. dla 3 jest prawdziwe, ale dla 2 jest nieprawdziwe.

 

`e)`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe.

 

`f)\`

`(-100)^3=-100*(-100)*(-100)=-1\ 000\ 000`

`-100^3=-1*100^3=-1*100*100*100=-1\ 000\ 000`

Jest to zdanie - możemy stwierdzić, że jest ono fałszywe. 

 

`g)`

Nie jest to zdanie - na końcu znajduje się wykrzynik. 

 

`h)`

Jest to zdanie - możemy stwierdzić, że jest ono prawdziwe.

Podaj przykład takich dwóch zdań p oraz q

Alternatywa będzie prawdziwa, jeśli przynajmniej jedno ze zdań p, q będzie prawdziwe, natomiast koniunkcja będzie fałszywa, jeśli przynajmniej jedno ze zdań p, q będzie fałszywe. Musimy więc podać przykład takich dwóch zdań, z których jedno jest prawdziwe, a drugie fałszywe. 

Poniżej podajemy kilka takich przykładów:

 

`a)`

`p:\ \ 2inN\ \ \ \ \ w(p)=1`

`q:\ \ piinW\ \ \ \ w(q)=0`

 

 

`b)`

`p:\ \ NWD(1,7)=7\ \ \ \ w (p)=0`

`q:\ \ 2>1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ w(q)=1`

 

 

`c)`

`p:\ \ "Polska leży w Europie"\ \ \ w(p)=1`

`q:\ \ "Opole to stolica Polski"\ \ \ w(q)=0`

 

Wiadomo, że prawdziwe są zdania p∨q

Alternatywy p∨q i p∨(¬q) różnią się tylko drugim zdaniem. Jeśli zdanie q jest prawdziwe, to zdanie ¬q jest nieprawdziwe, natomiast jeśli zdanie q jest nieprawdziwe, to zdanie ¬q jest prawdziwe - zawsze jedno ze zdań ¬q ma wartość logiczną 0. 

Zatem zdanie p nie może być fałszywe, bo wtedy któraś alternatywa byłaby fałszywa (oba zdania proste tworzące jedną alternatywę byłyby fałszywe), stąd wniosek, że wartość logiczna zdania p wynosi 1. 

 

`w(p)=1\ \ \ =>\ \ \ w(notp)=0\ \ \ =>\ \ \ w((#(notp)^0)wedgeq)=0`

Niezależnie od tego, jaką wartość logiczną przyjmuje zdanie q, wartość logiczna zdania (¬p)∧q wynosi 0, ponieważ pierwsze zdanie (¬p) jest fałszywe, więc koniunkcja jest fałszywa. 

Zapisz liczbę w postaci 3k, 3k+1 lub 3k+2

`a)\ 26=3*8+2`

`b)\ 76=3*25+1`

`c)\ 108=3*36`

`d)\ 127=3*42+1`

`e)\ 713=3*237+2`

Zapisz liczby w postaci

`a)` 

Zamienimy część ułamkową wyrażoną ułamkiem okresowym na ułamek zwykły. 

Mnożymy ułamek razy 10 do tej potęgi, jaką długość ma okres - u nas mnożymy przez 10 do potęgi pierwszej (czyli przez 10).

`\ \ \ x=0,777...` 

`10x=7,777...` 

`10x-x=7,777...-0,777...` 

`9x=7\ \ \ |:9` 

`x=7/9` 

Zapisujemy liczbę w postaci ułamka zwykłego:

`-2,(7)=-2 7/9=-25/9`  

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ x=0,888...` 

`10x=8,888...` 

`10x-x=8,888...-0,888...` 

`9x=8\ \ \ |:9` 

`x=8/9` 

 

`-7,(8)=-7 8/9=-71/9` 

 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

`\ \ \ x=0,2666...` 

`10x=2,6666...` 

`10x-x=2,6666...-0,2666...` 

`9x=2,4 \ \ |:9` 

`x=(2,4)/9=(0,8)/3=8/30=4/15`  

 

`1,2(6)=1 4/15=19/15` 

`ul(ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))`      

 

 

`b)` 

`\ \ \ \ x=0,05454...` 

`100x=5,45454...` 

`100x-x=5,45454...-0,05454...`  

`99x=5,4\ \ \ |:99` 

`x=(5,4)/99=(0,6)/11=6/110=3/55` 

 

`3,0(54)=3 3/55=168/55` 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ \ \ x=0,324324...` 

`1000x=324,324324...` 

`1000x-x=324,324324...-0,324324...` 

`999x=324\ \ \ |:999` 

`x=324/999=108/333=36/111` 

 

`-2,(324)=-2 36/111=-258/111` 

 

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

`\ \ \ \ \ x=0,0135135...` 

`1000x=13,5135135...` 

`1000x-x=13,5135135...-0,0135135...` 

`999x=13,5\ \ \ |:999` 

`x=(13,5)/999=(1,5)/111=15/1110=3/222` 

 

`8,0(135)=8 3/222=1779/222` 

Nie wykonując dzielenia podaj, które spośród liczb
  • Aby liczba dzieliła się przez 15 musi dzielić się przez 3 i przez 5, co oznacza, że suma jej cyfr musi byc liczbą podzielną przez 3 oraz jej ostatnią cyfrą musi być 0 lub 5. 
  • Aby liczba dzieliła się przez 45, musi dzielić się przez 9 i przez 5, co oznacza, że suma jej cyfr musi być liczbą podzielną przez 9 oraz jej ostatnią cyfrą musi być 0 lub 5
  • Aby liczba dzieliła się przez 75, musi dzielić się przez 3 i przez 25, co oznacza, że suma jej cyfr musi być liczbą podzielną przez 3 oraz jej dwie ostatnie cyfry to 00, 25, 50 lub 75. 

 

`a)`

`1+1+5+5=12`

 

Liczba 1155 jest podzielna przez 15. 

 

`b)`

`9+8+2+5=24`

Liczba 9825 jest podzielna przez 15 i 75. 

 

`c)`

`5+1+6+5=17`

Liczba 5165 nie jest podzielna przez 15, 45 ani 75.

 

 

`d)`

`8+2+3+5=18`

Liczba 8235 jest podzielna przez 15 i 45.

 

Utwórz zaprzeczenie zdania i oceń jego wartość

a)

Zaprzeczenie zdania:

Liczba 6 nie jest liczbą parzystą.

Wartość logiczna zaprzeczenia:

Fałsz.

 

b)

Zaprzeczenie zdania:

Liczba 17 nie jest podzielna przez 3.

Wartość logiczna zaprzeczenia:

Prawda.

 

c)

Zaprzeczenie zdania:

`5<=7`

Wartość logiczna zaprzeczenia:

Prawda.

 

d)

Zaprzeczenie zdania:

`0>3`

Wartość logiczna zaprzeczenia:

Fałsz

 

e)

Zaprzeczenie zdania:

`13-9!=5`

Wartość logiczna zaprzeczenia:

Prawda.

 

f)

Zaprzeczenie zdania:

`pi>=3`

Wartość logiczna zaprzeczenia:

Prawda.

 

g)

Zaprzeczenie zdania:

`7/17=1`

Wartość logiczna zaprzeczenia:

Fałsz

 

h)

Zaprzeczenie zdania:

`14/16!=2/3`

Wartość logiczna zaprzeczenia:

Prawda.

 

Podaj najmniejszą dodatnią liczbę naturalną podzielną przez

`a)\ 24`

`b)\ 60`

`c)\ 144`

`d)\ 120`