Liczby rzeczywiste - matura-podstawowa - Baza Wiedzy

Podział liczb rzeczywistych

Liczby rzeczywiste dzielą się na:

  • Naturalne: $$0, 1, 2, 3 ...$$
  • Całkowite (dodatnie oraz ujemne): $$... -3, -2, -1, 0, 1, 2, 3 ...$$
  • Wymierne:

    Liczby, które da się zapisać w postaci ułamka zwykłego dwóch liczb całkowitych np.: $$2/5$$, $$0,35$$ $$(0,35={35}/{100})$$.
    Uwaga! Liczby całkowite i naturalne są również liczbami wymiernymi.

  • Niewymierne:

    Są to liczby, których nie da się przedstawić w postaci ułamka dwóch liczb całkowitych, np.: $$π$$, $$√3$$.

Ogólny podział liczb rzeczywistych możemy przedstawić następująco:

podzial

Legenda:
R - Rzeczywiste
W - Wymierne
NW - Niewymierne
C - Całkowite (dodatnie i ujemne)
N - Naturalne

Zatem opisując ten schemat: liczby rzeczywiste dzielą się na wymierne i niewymierne. W skład wymiernych wchodzą całkowite, które z kolei zawierają naturalne.

 

Ułamki zwykłe

O ułamkach uczyliśmy się już w szkole podstawowej.

Oznaczamy nimi w matematyce „część” czegoś. 

 

Ułamek składa się z licznika, mianownika oraz kreski ułamkowej.

ułamek

Wyrażenie postaci `a/b` , gdzie a i b to liczby naturalne oraz b jest różne od zera, nazywamy ułamkiem zwykłym.

Ciekawostka

Współczesny sposób zapisu ułamków pochodzi od matematyków hinduskich, którzy zapisywali licznik i mianownik nie używając kreski rozdzielającej. Dodanie kreski rozdzielającej zawdzięczamy Arabom tłumaczącym dzieła Hindusów. W Europie znane do dziś oznaczenie ułamków jako pierwszy w swoich pracach publikuje włoski matematyk Fibonacci.

Ułamki to inny zapis dzielenia liczb naturalnych.
Iloraz liczb naturalnych `a:b` możemy zapisać w postaci ułamka `a/b` . Dzielna `a`  jest licznikiem ułamka, dzielnik `b`  różny od zera jest mianownikiem, a kreska ułamkowa zastępuje znak dzielenia: `a:b=a/b` , gdzie b jest różne od zera ($$b≠0$$).

Przykłady:

  • `9/2=9:2`  

  • `2/3=2:3`  


Odwrotność ułamka

Jeżeli dany jest ułamek `a/b`, to ułamek `b/a` nazywamy odwrotnością ułamka `a/b` , gdzie `a!=0 \ "i" \ b!=0` .

Przykłady

  • odwrotnością liczby `3/4`  jest ułamek `4/3` ;  

  • odwrotnością liczby `4=4/1`  jest ułamek `1/4`,

  • odwrotnością ułamka  `1/9` jest liczba `9/1=9`


Ułamek w życiu codziennym

W życiu codziennym ułamek jest stosowany bardzo często, głównie oznacza część (kawałek) jakiejś całości.

Przykład:

  • Gdy podzielimy pizzę na 7 kawałków i zabierzemy 3 kawałki, to będziemy mieli `3/7`  („trzy siódme”) pizzy.

    Ogólnie:

    `a/b`   → jeśli mamy jakiś przedmiot (np. jabłko, tort, pizzę, czekoladę), to mianownik `b`  mówi na ile części go dzielimy, a licznik `a`  – ile takich części zabieramy.

Rodzaje ułamków

W ułamkach zwykłych występują również specjalne rodzaje ułamków.

  1. Ułamek niewłaściwy
    W ułamku niewłaściwym góra jest większa od dołu, czyli licznik jest większy od mianownika. Przykłady: $$7/4$$, $$8/3$$, $$4/2$$.

    Ułamek niewłaściwy możemy zapisać w postaci mieszanej.

  2. Ułamek mieszany
    Jest on połączeniem części ułamkowej i całkowitej np.: $$3{3}/{4}$$ . Możemy swobodnie przechodzić z ułamków niewłaściwych do mieszanych oraz na odwrót.

  3. Ułamek dziesiętny
    Ułamki dziesiętne to ułamki zwykłe o mianowniku będącym potęgą liczby 10 (10,100,1000,1000000 itd.)

 

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: 

  1. Mianownik części ułamkowej mnożymy razy część całkowitą liczby mieszanej.

  2. Do otrzymanego iloczynu dodajemy licznik części ułamkowej.

Mianownik szukanego ułamka niewłaściwego jest równy mianownikowi części ułamkowej liczby mieszanej.

Przykłady: 

`3 1/4=(3*4+1)/4=13/4` 


`5 2/7=(5*7+2)/7=37/7` 

Zamiana ułamka niewłaściwego na liczbę mieszaną

W tym przypadku wykonujemy dokładnie odwrotne działania niż przy zamianie liczby mieszanej na ułamek niewłaściwy. 


Krok po kroku - zamiana ułamka niewłaściwego `16/3`  na liczbę mieszaną

  1. Najpierw dzielimy licznik przez mianownik, czyli `16:3=5 \ \ "r" \ 1 \ \ \ "bo" \ \ \ 5*3+1=15+1=16` 

  2. Otrzymujemy 5 całości. Pozostaje nam jeszcze 1 część. 

Mamy więc: 

`16/3=5 1/3` 


Przykłady:

  • `21/4=5 1/4` 

  • `35/6=5 5/6` 


Zamiana ułamka niewłaściwego na liczbę mieszaną lub liczbę naturalną nazywana jest wyłączaniem całości z ułamka

 

Rozszerzanie i skracanie ułamków

Każdy ułamek możemy rozszerzyć poprzez pomnożenie zarówno licznika jak i mianownika przez dowolną liczbę różną od 0. Pamiętamy przy tym o dwóch zasadach:

  • Każda liczba pomnożona przez 0 da 0
  • Kreska ułamkowa zastępuje znak dzielenia, a przez 0 nie dzielimy

Przykłady rozszerzania ułamków:

  • $${3}/{5}={3×3}/{5×3}={9}/{15}$$
  • $${4}/{7}={4×5}/{7×5}={20}/{35}$$

Każdy ułamek możemy skrócić dzieląc zarówno licznik i mianownik przez liczbę, przez którą obie liczby są podzielne.

Przykłady skracania ułamków

  • $${6}/{10}={3}/{5}$$
  • $${8}/{32}={1}/{4}$$
  • $${14}/{7}=2$$

Uwaga!

Wynik ułamkowy zawsze sprowadzamy do postaci nieskracalnej! Możemy skracać lub rozszerzać część ułamkową w ułamku mieszanym.

Ułamki dziesiętne

Kolejny z omawianych typów ułamków to ułamki dziesiętne. Są to ułamki zwykłe o mianowniku będącym potęgą liczby 10 (10,100,1000,1000000 itd.). Aby uzyskać taki ułamek wystarczy, ze doprowadzimy metodami rozszerzania lub skracania do takiej liczby w mianowniku. Możemy także podzielić licznik przez mianownik.

Ułamek dziesiętny został stworzony po to, aby ułatwić ludzkości przeliczanie części. Badania marketingowe potwierdzają, że cena odpowiednio obniżona o 1-10gr działa cuda w porównaniu do pierwotnej.

Przykłady ułamków dziesiętnych:

  • $$0,4$$
  • $$5,25$$
  • $$9,135$$

Uwaga!

Możemy dowolnie dopisywać 0 za ostatnią cyfrą po przecinku np. $$0,6=0,60=0,600$$ , ale nie możemy ich usunąć przed tą cyfrą zatem równanie $$0,06=0,6$$ jest fałszywe!

Doprowadzenie do ułamka dziesiętnego odbywa się głównie na dwa sposoby:

  1. Rozszerzanie lub skracanie ułamka
    Doprowadzamy poznaną wcześniej metodą do wymaganego mianownika.

    Przykłady:

    • $${3}/{5}={3×2}/{5×2}={6}/{10}=0,6 $$
    • $${11}/{4}=2{3}/{4}=2{3×25}/{4×25}=2{75}/{100}=2,75$$
  2. Dzielenie licznika przez mianownik
    W tym przypadku obliczenia będziemy wykonywać pod kreską.

    Przykład:

    • p1

      $${1}/{8}=0,125$$

Specjalnym typem ułamków dziesiętnych są ułamki okresowe, gdzie okresem nazywamy powtarzające się w nieskończoność cyfry za przecinkiem, okres oznaczamy symbolami $$( )$$.

Przykład:

p2

$${1}/{6}=0,166666=0,1(6)$$

Spis treści

Rozwiązane zadania
Jeden z boków prostokąta ma długość 18 cm ...

 

Oznaczmy długość szukanego boku przez x. Aby prostokąty były podobne, musi być prawdziwa

jedna z proporcji:

   

  

Długość drugiego boku powinna być równa 12 cm lub 27 cm.

 

 Obliczmy jaką długość ma przekątna pierwszego prostokąta: 

 

Stosunek długości przekątnej pierwszego prostokąta do długości przekątnej drugiego prostokąta: 

 

Sprawdźmy, czy stosunek długości któregoś z boków pierwszego prostokąta do długości 20 cm boku drugiego prostokąta wynosi `4/5` 

Prostokąty są więc podobne, a skala podobieństwa wynosi `4/5` 

 

Obliczmy obwód pierwszego prostokąta: 

 

Obliczmy jaką długość ma przekątna większego prostokąta: 

 

Stosunek długości przekątnych także jest równy skali podobieństwa, oznaczmy długośc przekątnej mniejszego prostokąta przez y:


`3sqrt41*2=3y\ \ \ |:3` 

Wyznacz punkty wspólne wykresów ...

 

 

  

      

  

 

 

 

    

  

  

 

 

 

 

 

 

 

 

Naszkicuj wykres dowolnej funkcji...

a) Wykres:

 

b) Wykres:

 

Funkcje fg mają takie samo miejsce zerowe.

 

Funkcje fh przecinają się w tym samym punkcie z osią y.

 

Wszystkie funkcje mają taką samą dziedzinę i zbiór wartości.

Nierówność spełniają:

Odpowiedź A jest fałszywa, ponieważ np. liczba  jest mniejsza od  ale  {premium}

Odpowiedź B jest fałszywa np. z tego samego powodu, co A.

Odpowiedź C jest fałszywa np. z tego samego powodu, co A.


Prawidłowa odpowiedź to D.

Podaj przykłady liczb niewymiernych, których:

a)

b)

Jakim liczbom odpowiadają punkty zaznaczone na osi?

Aby obliczyć jednostkę, odejmujemy od wybranej większej zaznaczonej liczby mniejszą zaznaczoną liczbę i dzielimy na ilość odcinków jednostkowych znajdujących się między tymi liczbami. 

 

 

 

 

 {premium}

 

 

 

 

 

 

 `-3 +9/7=-3+1 2/7=` `=-1 5/7` 

 

 

 

 

 `4/3=1 1/3` 

 `3 6/15-1 5/15=` `2 1/15` 

 `3 2/5+8/3=` `3 2/5+2 2/3=` 

 `5 16/15=6 1/15` 

 `7 6/15+1 5/15=` `8 11/15` 

 

 

 

 `(1 5/11+2/11)/3=` `1 7/11:3=` `18/11*1/3=6/11` 

 

 

 `1 5/11+12/11=` `1 5/11+1 1/11=` `2 6/11` 

 

W tabeli podano długości

Długość połowy obwodu różni się od liczby pi o mniej niż 0,01 dla dwóch ostatnich wielokątów (wyniki zostały podkreślone). 

 

Kurtki uszyte w zakładzie krawieckim...

a) Skoro kurtka jest sprzedawana po 190 zł a koszt jej produkcji to 110 zł to znaczy, że dochód z każdej sprzedanej kurtki wynosi 80 zł. Zatem wzór funkcji to:

 

 

b) Sprawdźmy dla jakiego x wartość funkcji będzie dodatnia:

 

 

 

 

 

 

Odpowiedź: Szycie kurtek zacznie przynosić zyski jeżeli zostanie sprzedanych co najmniej 188 kurtek.

 

c) Sprawdźmy kiedy wartość funkcji będzie większa bądź równa 2000.

 

 

 

 

 

Odpowiedź: Szycie kurtek wygeneruje 2000 zł dochodu jeżeli zostanie sprzedanych co najmniej 213 kurtek.

Wyznacz dziedzinę i zbiór rozwiązań równania:

 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie: {premium}

 

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

Rozwiązujemy równanie:

 

  

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

Rozwiązujemy równanie:

 

  

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  


 Wyznaczamy dziedzinę:

 

 

 

 

Rozwiązujemy równanie:

 

 

 

Zbiór rozwiązań równania:  

Wykres funkcji f(x) ...