Ciąg geometryczny i jego suma - matura-podstawowa - Baza Wiedzy

Ciąg geometryczny i jego suma

Temat ten jest bardzo podobny do obliczania sumy ciągu arytmetycznego, lecz w przypadku ciągu geometrycznego musi wykonać więcej obliczeń.

Jak pamiętamy ciąg to ponumerowane liczby. Dodatkowy wiemy, że ciąg geometryczny to taki gdzie iloraz pomiędzy kolejnymi wyrazami jest zawsze taki sam.

Mamy przykładowy ciąg:

$$a_n=2,4,8,16,32,x$$

Gołym okiem widać, że ciągle jest mnożony przez 2, zatem nasz x będzie wynosić 64, bo $$32*2=64$$

Jednak i tu nie jest tak łatwo jeśli mamy ciąg takiej postaci:

$$a_n=1/3,-1/5,3/{2}5,-9/{25},x$$

Przykład:

Znajdź $$x$$ w ciągu $$a_n=1/3,-1/5,3/{2}5,-9/{25},x$$. Musimy najpierw znaleźć jaki iloraz został tutaj użyty, zatem wprowadźmy wzór na dowolny wyraz ciągu geometrycznego:

$$a_n=a_1×q^(n-1)$$

Podstawmy tu wyraz numer 2:

Czyli $$n=2$$

$$a_2=a_1×q^(2-1)$$

Nasze wyrazy to:

$$a_1=1/3$$

$$a_2=-1/5$$

Podstawiamy do wzoru:

$$a_2=a_1×q^1$$

W celu usunięcia ułamków

$$-1/5=1/3×q$$ $$|×15$$

$$-3=5×q$$ $$|:(-3)$$

$$q=-5/3$$


Obliczmy teraz bez problemu wyraz numer 5:

$$a_5=a_1×q^(5-1)$$

$$a_5=a_1×q^4$$

$$a_5=1/3×(-5/3)^4$$

$$a_5=1/3×-{625}/{81}=-{625}/{243}$$


Ciąg geometryczny ma również własność wyrazu środkowego - kwadrat wyrazu środkowego jest równy iloczynowi wartości sąsiednich wyrazów, czyli:

$$a_{n-1}$$, $$a_n$$, $$a_{n+1}$$ -> trzy kolejne wyrazy

$$a_n^2=a_{n-1}×a_{n+1}$$

 

Suma ciągu geometrycznego


W celu obliczenia sumy ciągu geometrycznego potrzebujemy następujących danych:
  • Pierwszy wyraz: $$a_1$$
  • Ilość wyrazów, których sumę liczymy: $$N$$
  • Iloraz: $$q$$

Wzór na sumę wygląda następująco:

$$S_N={a_1(1-q^N)}/{1-q}$$

Przykład:

Oblicz sumę pierwszych 7 wyrazów ciągu geometrycznego, gdzie ostatni wyraz to $$a_7=81$$, a iloraz to $$q=3$$.

Potrzebujemy podstawy, zatem obliczmy $$a_1$$ z wzoru na dowolny wyraz:

$$a_N=a_1×q^{N-1}$$

$$a_7=a_1×q^6$$

Podstawmy: $$81=a_1×3^6$$

81 również jest potęgą trójki, więc zamiast bawić się w duże liczby zróbmy tak:

$$3^4=a_1×3^6$$ $$|:3^6$$

Z własności dzielenia potęg:

$$3^{-2}=a_1$$

$$1/9=a_1$$

Wiemy, że N=7, bo 7 wyrazów, więc liczymy sumę:

$$S_N={a_1 (1-q^N)}/{1-q}$$

$$S_7={1/9(1-3^7)}/{1-3}$$

$$S_7={1/9(1-3^7)}/{1-3}$$

$$S_7={1/9(-2186)}/{-2}$$

$$S_7={-{2186}/9}/{-2}$$

$$S_7={2186}/{18}$$
 

Uwaga!

Powyższe wzory są zawarte w karcie wzorów.

Wzór na dowolny wyraz jest uniwersalny, działa dla każdego ciągu geometrycznego.
 

Zadania powtórzeniowe

Zadanie 1.

Mamy ciąg geometryczny w postaci $$x+1,0,x-3$$. Oblicz x, rozważ wszystkie możliwe przypadki.

Skorzystamy tutaj z wzoru ratującego życie, czyli na sąsiednie wyrazy:

$$a_2^2=a_1×a_3$$

Podstawiamy:

$$0=(x+1)(x-3)$$

Z zasad mnożenia wiemy, że mnożenie to 0 jeśli jeden z czynników to 0, więc mamy tu dwa przypadki:

$$x+1=0$$

Lub

$$x-3=0$$

zatem mamy dwa rozwiązania:

$$x=-1$$ lub $$x=3$$

Zadanie 2.

Oblicz sumę ciągu geometrycznego jeśli składa się z 10 wyrazów, o ilorazie $$q=1/2$$, jeśli $$a_6=72$$.

Zadanie bardzo podobne do przykładu przedstawionego w tym temacie.

Najpierw znajdźmy podstawę z wzoru na dowolny wyraz:

$$a_n=a_1×q^(n-1)$$

$$a_6=a_1×q^5$$

Podstawmy:

$$72=a_1×{(1/2)}^5$$

$$72=a_1×1/{32}$$

$$a_1=72×32=2304$$

Mamy już wszystko, pozostaje nam wyliczyć sumę:

$$N=10$$

$$a_1=2304$$

$$q=1/2$$

Zatem obliczamy sumę, podstawiając wszystkie wartości pod wzór:

$$S_N={a_1 (1-q^N)}/{1-q}$$

$$S_10={2304(1-(1/2)^10)}/{1-1/2}$$

$$S_10={2304(1-1/{1024})}/{1/2}$$

$$S_10={2304-{2304}/{1024} }/{1/2}$$

$$S_10=2×(2304-{2304}/{1024})$$


$$S_10=4608-{2304}/{512}$$

I teraz doprowadzamy do najprostszej postaci:

$$S_10=4608-9/2=4603,5$$

Zadanie 3.

Oblicz iloraz ciągu jeśli $$a_2=25$$ i $$a_4=1$$.

Możemy również skorzystać z wzoru na sąsiedni wyraz ciągu w celu szybszego obliczenia:

$$a_3^2=a_2×a_4$$

Podstawiamy:

$$a_3^2=25×1$$

$$a_3^2=25$$

Więc znów mamy dwa przypadki

$$a_3=5$$ oraz $$a_3=-5$$

Załóżmy przypadek pierwszy czyli $$a_3=5$$ wtedy:

$$q={a^4}/{a^3}=1/5$$

Zatem w drugim przypadku jest to:

$$q={a^4}/{a^3} =1/{-5}=-1/5$$

Spis treści

Rozwiązane zadania
Narysuj dowolny wektor ...

 

 

 

 

   

 

Zaznacz na osi liczbowej zbiór rozwiązań

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7. 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 2/5.

 

 

 

 

 

 

 

 

 

 

 

Szukamy liczb, których odległość od zera na osi liczbowej jest nie większa niż 7/5.

Włącz czynnik pod pierwiastek

Oblicz obwód i pole trapezu...

Rysunek poglądowy:

 

 

 

 

 

 

Obwód:

 

 

Pole:

 

Oblicz f(-2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Dane są zbiory A=(-∞;5),B=<a;9). Jeśli A∩B
Zatem:
Sporządź wykresy funkcji...

a) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są niedodatnie.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

 

b) Wykresy:

 

 

 

 

Wspólne własności:

- Dziedzina.

- Zbiór wartości.

- Liczba miejsc zerowych.

- Wszystkie wartości funkcji są nieujemne.

- Druga współrzędna wierzchołka.

 

Różnice:

- Pierwsza współrzędna wierzchołka.

- Miejsca zerowe.

- Monotoniczność.

- Punkt przecięcia z osią y.

Oblicz wartości pozostałych funkcji ...

 

 

 {premium}

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Prosta l jest styczna do okręgu ...

Przyjmijmy oznaczenia jak na rysunku. Zauważmy, że:

  

 

 

 

Trójkąt ROP jest trójkątem równoramiennym, ponieważ |OR|=|OP|.

Miary kątów przy podstawie PR są sobie równe i wynoszą 42o.

Korzystając z tw. o sumie miar kątów w trójkącie (dla trójkata ROP) obliczamy miarę kąta ß:

 

 

 

 

 

Odp: Cięciwa wyznacza kąt środkowy o mierze 96o.

Wyznacz równanie osi symetrii paraboli oraz współrzędne jej wierzchołka

Najpierw wyznaczymy miejsca zerowe (x₁ i x₂, następnie wyznaczymy równanie osi symetrii jako średnią arytmetyczną tych miejsc zerowych. Współrzędna x wierzchołka paraboli jest równa tyle, ile oś symetrii. Współrzędna y wierzchołka paraboli to z kolei wartość, jaką osiąga funkcja dla argumentu równego pierwszej współrzędnej wierzchołka paraboli)

 

 

 

 

 

 

 

 {premium}

 

 

   - współrzędne wierzchołka paraboli

   - równanie osi symetrii paraboli