Błąd względny i bezwzględny - matura-podstawowa - Baza Wiedzy

Błąd względny i bezwzględny

Pomiary są stosowane od zawsze, budowa, architektura, elektronika, fizyka czy życie codzienne nie mogą się bez nich obyć. Wszystko co mierzymy ma wartość, której dokładnie nie znamy, dlatego stosujemy najczęściej wartość przybliżoną.

Często nie jesteśmy w stanie zmierzyć jakiegoś zjawiska czy przedmiotu. Możemy zrzucić piłkę z 20m:
- licząc sekundy głośno wyjdzie nam 5s,
- używając stopera zatrzymamy go na 4,44s
- z kolei mając dostarczone dane, odczytujemy, że powinna spadać 4,1s.

Zatem pomyliliśmy się w naszych testach, jednakże możemy je wykonać ponownie i za każdym razem porównywać wyniki z wartością dokładną.

Błąd bezwzględny

W celu policzenia błędu bezwzględnego musimy znać wartość dokładną oraz przybliżoną, oznaczmy je jako:

d - wartość dokładna

p - wartość przybliżona

b - błąd

Oczywiście dobrane litery (zmienne) możemy mieć dowolne. Skorzystamy ze wzoru:

$$b=|d-p|$$

Najzwyczajniej w świecie liczymy różnicę pomiędzy naszym pomiarem, a wartością dokładną, jednakże korzystamy z wartości bezwzględnej. Uzasadnienie jest proste: nie możemy uzyskać błędu o wartości ujemnej (np.: "Te drzewa się różnią się o minus trzy metry"). Dla przypomnienia: wartość bezwzględna zawsze daje wynik dodatni lub 0, więcej o niej opowiemy w następnych działach (wpisz w naszą portalową wyszukiwarkę "wartość bezwzględna").

Przykład:

Odczytaliśmy z termometru za oknem temperaturę $$-15,2 ^{o}C$$. Termometr elektroniczny umieszczony tuż obok wskazuje temperaturę $$-15,39 ^{o}C$$. Jaki jest błąd bezwzględny naszego pomiaru?

$$d=15,39$$ -> W trakcie obliczeń opuszczę dla wygody jednostki, czyli tym razem stopnie Celsjusza.

$$p=15,2$$

$$b=|d-p|$$

$$b=|-15,39-(-15,2)|$$ -> pamiętamy, że dwa minusy dają plus

$$b=|-15,39+15,2|=|-0,19|=0,19$$ -> opuszczając wartość bezwzględną z liczby ujemnej zawsze mamy dodatnią

zatem błąd względny to:

$$b=0,19^{o}C$$
 

Błąd względny

Przy błędzie bezwzględnym liczyliśmy dokładną różnicę pomiędzy pomiarami, w przypadku względnego stosujemy różnicę procentową, zatem wystarczy policzyć o ile procent zaszła pomyłka. Bez wartości błędu bezwzględnego nie obliczymy wartości błędu względnego.

Dobierzmy odpowiedni wzór stosując oznaczenia:

d - wartość dokładna

bb - błąd względny

b - błąd bezwzględny

$$bb=b/d×100%$$
 

Przykład:

Tomek oszacował wysokość drzewa na działce na 7,5m. Założył się z Markiem o butelkę Coli , że pomylił się maksymalnie o 10%. Zmierzyli wysokość drzewa, która wynosiła 6,5m. Kto wygrał zakład?

Zaczynamy w tym wypadku od błędu bezwzględnego. Liczymy:

b - błąd bezwzględny

d - wartość dokładna

p - pomiar

$$b=|d-p|$$

$$b=|7,5-6,5|=1m$$

Jak widać tutaj wartość bezwzględna nam nic nie zmienia.

Mamy błąd bezwzględny, zatem teraz policzymy błąd względny.

$$bb=b/d×100%$$

$$bb=1/{6,5}×100%$$

$$bb={100}/{6,5}%$$

Rozszerzmy razy 10 nasz ułamek: $$bb={1000}/{65}%≈15,39%$$

Zatem zakład wygrał Marek, $$15,39%$$ to więcej niż $$10%$$.

Zadania powtórzeniowe

Zadanie 1.

Zmierzyliście ścianę w Waszej klasie, miała 2,47m, jednakże na planie szkoły, napisano, że ma 2600mm, jaki jest błąd względny i bezwzględny Waszego pomiaru? (Uwaga! Wartości na planach zapisywane są w mm).

Zacznijmy od wypisania danych, przyjmę takie same oznaczenia jak w przykładzie. Pamiętamy o zamianie jednostek na jednakową!

$$d=2600mm=260cm=2,6m$$

$$p=2,47m$$

$$b=|d-p|=|2,6-2,47|=0,13m$$

Błąd bezwzględny to $$0,13m$$

Obliczmy i względny

$$bb={0,13}/{2,6}×100%$$

$$bb={13}/{2,6}%$$

$$bb=5%$$

Odp: Błąd bezwzględny to $$0,13m$$ , a względny $$5%$$  

Zadanie 2.

Na festiwalu odbył się konkurs. Trzeba było zgadnąć ile kuleczek jest w słoiku. Nowak odpowiedział, że 356. Kowalski, że 445, a Piłkowski 375. W słoiku było 405 kulek. Za pomocą błędu bezwzględnego wyznacz zwycięzcę, oblicz o ile procent się pomylił.

Oznaczmy:

p - Pomiar Piłkowskiego

k - Pomiar Kowalskiego

n - Pomiar Nowaka

d - ilość dokładna

Policzmy po kolei błędy względne

Nowak:

$$b_n=|d-n|=|405-356|=49$$

Kowalski:

$$b_k=|d-k|=|405-445|=|-40|=40$$

Piłkowski:

$$b_p=|d-p|=|405-375|=30$$

Jak widzimy Piłkowski wygrał, zatem obliczmy o ile % się pomylił

$$bb={30}/{405}×100%$$

$$bb={3000}/{405}%$$

$$bb={600}/{81}%$$ -> skróciliśmy razy 5

$$bb={200}/{27}%$$ -> skróciliśmy razy 3

$$bb={200}/{27}%≈7,4%$$

Zadanie 3.

Trzy różne osoby rzuciły piłkę z okna i zatrzymały stoper w momencie uderzenia o ziemię. Ich pomiary to: 3,25s ; 4,5s ; 4s. Czas spadku piłki to 4s. Oblicz średni względny błąd pomiaru.

Zadanie Combo, musimy policzyć aż 6 błędów (3 względne i 3 bezwzględne) oraz policzyć ich średnią, to zaczynamy!

Oznaczmy czasy jako:

$$a=3,25s $$

$$e=4,5s $$ -> celowo ominąłem b, żeby nie mylić z błędem bezwzględnym

$$c=4s $$

$$d=4s $$

Liczymy błędy bezwzględne

$$ba=|4s-3,25s|=0,75s$$

$$be=|4s-4,5s|=|-0,5s|=0,5s$$

$$bc=|4s-4s|=0s$$

Liczymy względne

$$bba={0,75s}/{4s}×100%$$

$$bba={75}/{4}%$$

$$bba=18,75%$$

Kolejny:

$$bbe={0,5s}/{4s}×100%$$

$$bbe={50}/{4}%$$

$$bbe=12,5%$$

I ostatni:

$$bbc=0s/4s×100%$$

$$bbc=0%$$ -> strzelec wyborowy :)

Pozostaje nam obliczyć średnią, średnia to suma elementów przez ich ilość, więc

$$BBśr={18,75+12,5+0}/{3}%={31,25}/{3}%≈10,42%$$

Zatem średni błąd względny to: $$10,42%$$
 

Spis treści

Rozwiązane zadania
Grupa m uczniów

Musimy dodać koszt przeprawy autokaru, koszt przeprawy m uczniów oraz koszt przeprawy dwóch nauczycieli:

Wyznacz trzy kolejne liczby całkowite:

 Trzy kolejne liczby całkowite parzyste to:  gdzie  

Wiemy, że suma tych liczb wynosi  

Układamy równanie i wyznaczamy z niego  

 

 

 

 

Obliczamy wartości liczb: {premium}

 

 

 

Odp. Szukane liczby to  


 Trzy kolejne liczby całkowite nieparzyste to:  gdzie  

Wiemy, że suma tych liczb wynosi  

Układamy równanie i wyznaczamy z niego  

 

 

 

 

Obliczamy wartości liczb:

 

 

 

Odp. Szukane liczby to  

Wykres przedstawia funkcję f...

 

Prawda

 

  

 

Fałsz

 

C. Funkcja przyporządkowuje argumentowi x liczbę przeciwną do liczby stanowiącej połowę liczby o 1 większej od x.

 

Prawda

Wykres funkcji f

 

Wykres funkcji f otrzymano przesuwając wykres funkcji y=x2 o 2 jednostki w {premium}prawo wzdłuż osi OX oraz o 2 jednostki w dół wzdłuż osi OY. 

 

  

 

 

 

Wykres funkcji f otrzymano przesuwając wykres funkcji y=x2 o 1 jednostkę w prawo wzdłuż osi OX oraz o 2 jednostki w górę wzdłuż osi OY. 

 

  

 

 

 

 

Wykres funkcji f otrzymano przesuwając wykres funkcji y=x2 o 2 jednostki w lewo wzdłuż osi OX oraz o 1 jednostkę w dół wzdłuż osi OY. 

 

 

Oblicz pole trójkąta ABC.

 

 

 

 

{premium}

 

 

  

 

Dodajmy równania do siebie.

 

 

 

 

 

 

   

      

 

 

 

 

 

 

  

 

  

  

Dodajmy równania do siebie.

 

 

  

 

  

 

     

        

Oblicz

{premium}

 

Niech log2 = a...

Będziemy rozkładać liczby na czynniki pierwsze i stosować odpowiednie własności logarytmu.

 

 

 

 

 

 

 

 

Rozłóżmy liczbę na czynniki pierwsze

 

 

 

 

 

 

 

 

Na podstawie definicji logarytmu (logab=c <=>

a)

b)

c)

d)

e)

f)

g)

h)

 

Określ dziedzinę funkcji

 

 

Argument 3 nie należy do dziedziny funkcji, więc nie możemy obliczać f(3). Obliczamy, jaką wartość przyjmuje funkcja dla argumentu x=-3:  

 

 

 

 

 

 

 

Argument -3 nie należy do dziedziny funkcji, więc nie możemy obliczać f(-3). Obliczamy, jaką wartość przyjmuje funkcja dla argumentu x=3:   

 

 

 

 

 

 

Argumenty 3 i -3 nie należą do dziedziny funkcji, więc nie możemy obliczać f(-3) ani f(3).

 

 

Oblicz