Arytmetyka liczb wymiernych - matura-podstawowa - Baza Wiedzy

Kolejność wykonywania działań

Przed rozpoczęcie wykonywania działań musimy pamiętać w jakiej kolejności to robić:

  1. Potęgi i nawiasy
  2. Mnożenie i dzielenie
  3. Dodawanie, odejmowanie

Dodawanie i odejmowanie liczb naturalnych

Podstawowe działanie, które ciągnie się za nami aż od podstawówki. Nie trzeba już chyba nic tłumaczyć. Przedstawiamy jedynie kilka przykładów.

Przykłady:

  • $$19+16=35$$
  • $$105-0=105$$
  • $$123+452=575$$
  • $$356-185=171$$

Dodawanie i odejmowanie liczb całkowitych

W tym wypadku musimy uważać na znaki "plus" i "minus", może się zdarzyć sytuacja, że znajdziemy dwa znaki obok siebie, wtedy musimy zamienić dwa znaki w jeden. Tabelka poniżej powinna wyjaśnić wszelkie wątpliwości:

tabelka

Przykłady:

  • $$156-(-29)=156+29=185$$
  • $$99+(-65)=99-65=34$$
  • $$99+(101+25)=99+101+25=225$$
  • $$99-(101-65+2)=99-101+65-2=61$$

Dodawanie i odejmowanie ułamków zwykłych

Najważniejszą rzeczą podczas dodawania i odejmowania ułamków zwykłych jest sprowadzenie danych ułamków do wspólnego mianownika.

Aby sprowadzić ułamek do wspólnego mianownika musimy rozszerzyć oba ułamki przez liczbę w taki sposób, aby otrzymać takie same mianowniki, a następnie dodać liczniki, czyli:

$$1/3+3/4=1/3×4/4+3/4×3/3=4/{12}+9/{12}={13}/{12}=1{1}/{12}$$

Wykonaliśmy mnożenie przez 1 w różnych formach ($$4/4$$ oraz $$3/3$$), przez co sprowadziliśmy ułamki do wspólnego mianownika (12), nie zaburzając działania.

Tak samo w przypadku odejmowania.

$$1 1/5-3/4=6/5-3/4=6/5×4/4-3/4×5/5={24}/{20}-{15}/{20}={9}/{20}$$

Pamiętaj, aby zawsze skracać ułamki!

Mnożenie i dzielenie liczb naturalnych

Podstawowe zasady do przypomnienia:

  1. Nie można dzielić przez 0,
  2. Mnożenie przez 0 dowolnej liczby daje nam 0,
  3. Mnożenie lub dzielenie przez 1 daje nam tą samą liczbę.

Przykłady:

  • $$6×15=90$$
  • $$99×0=0$$
  • $$55÷5=11$$

Mnożenie i dzielenie liczb całkowitych

Wszystko dzieje się identycznie jak w przypadku liczb naturalnych. Jednakże musimy skorzystać ponownie z tabelki zamiany znaków "plus" i "minus":

tabelka

Przykłady:

  • $$7×(-8)=-56$$
  • $$-100÷4=-25$$
  • $$-55×(-3)=165$$

Ponadto jeśli mamy mnożenie lub dzielenie przed nawiasem, mnożymy lub dzielimy każdy składnik nawiasu pamiętając o znaku, na przykład:

$$-5(3+12-5)=-15-60+25=-50$$
 

Mnożenie i dzielenie ułamków zwykłych

W przypadku mnożenia ułamków, sprawa prosta. Mnożymy:
Licznik razy Licznik i Mianownik razy Mianownik

Przykład:

$$1/5×3/2=3/{10}$$

W przypadku dzielenia w drugim z ułamków należy zamienić licznik z mianownikiem i wtedy pomnożyć oba ułamki.

Przykład:

$$-{4}/{3}÷{2}/{5}=-4/3×5/2=-{20}/6$$

Nie możemy mnożyć i dzielić ze sobą ułamków mieszanych. Najpierw musimy je zamienić na niewłaściwe.

Przykład:

$$3 {1}/{5}×2 {1}/{4}={16}/{5}×9/4={144}/{20}={72}/{10}={36}/{5}=7{1}/{5}$$

Porady

  • Możemy zostawiać wyniki w ułamkach w postaci niewłaściwej, ale koniecznie nieskracalnej
  • Ułamek to tak naprawdę dzielenie $$1/2=1÷2 $$
  • Skoro ułamek to dzielenie, w mianowniku nie może być 0
  • Skracać ułamki na krzyż (np. licznik pierwszego z mianownikiem drugiego) można tylko przy mnożeniu i dzieleniu. Przy dodawaniu i odejmowaniu jest to niedopuszczalne!

Zadania powtórzeniowe

Zadanie 1.

Oblicz:
$${2 1/2-0,9+2/3}/{1/4+1/5-1/3}=$$

Zaczynamy od obliczenia tego co jest w liczniku i w mianowniku:
Licznik:
Zamieniamy wszystko na ułamki zwykłe lub niewłaściwe:
$${2 1/2-0,9+2/3}/{1/4+1/5-1/3}={5/2-9/{10}+2/3}/{1/4+1/5-1/3}$$

Sprowadzamy do wspólnego mianownika - przez 10, 2, 3 dzieli się 30
$${5/2-9/{10}+2/3}/{1/4+1/5-1/3}={ {75}/{30}-{27}/{30}+{20}/{30} }/{1/4+1/5-1/3}$$

I wykonujemy działanie
$${ {68}/{30} }/{1/4+1/5-1/3}$$

Mianownik:
Sprowadzamy ułamki w mianowniku do wspólnej wartości - przez 4,5,3 dzieli się 60.
$${ {68}/{30} }/{ {15}/{60}+{12}/{60}-{20}/{60} }$$

Pozostaje nam wykonać działanie
$${ {68}/{30} }/{ {7}/{60} }={68}/{30} ÷ { {7}/{60} }$$
Odwracamy drugi ułamek i mnożymy:
$${68}/{30}×{60}/7$$
I skracamy na krzyż:
$${68}/1×2/7$$
Mnożymy licznik przez licznik i mianownik przez mianownik i wynik:
$${136}/{7}$$

Zadanie 2.

Oblicz:
$$5(3-1/2+7/8)-(1/2+2,5)=$$

Najpierw bezpieczniej wykonać to co jest w nawiasie, znów wspólne mianowniki, 2 i 8 to 16:
$$5(3-8/{16}+{14}/{16})-(1/2+2,5)=$$

Musimy działać od lewej do prawej, więc najpierw wykonujemy odejmowanie, w drugim nawiasie przekształcamy dziesiętny
$$5(2 8/{16}+{14}/{16})-(1/2+5/2)=$$
Zamieniamy na ułamek niewłaściwy, ułatwi nam to potem mnożenie, w drugim dodajemy
$$5({40}/{16}+{14}/{16})-6/2=$$

Dodajemy to co w nawiasie i dzielimy ułamek wolny
$$5×{54}/{16}-3=$$

Wykonujemy najpierw mnożenie, jednakże skróćmy ułamek przez 2
$$5×{27}/8-3=$$

$${135}/8-3=$$

Rozszerzmy przez $$8/8$$ nasza trójkę i mamy wynik:
$${135}/8-{24}/8={111}/8$$

Zadanie 3.

Oblicz: $${2+2/3-3/5÷{6/5} }/{5/2×2/3}=$$

Zaczynamy znów np. od licznika, możemy zrobić dodawanie, które nam nie koliduje z dzieleniem, ale już odejmowanie nie, bo przeczy to kolejności, zamienimy również dzielenie na mnożenie, więc:
Licznik:
$${6/3+2/3-3/5×5/6}/{5/2×2/3}=$$

Skracamy ułamki w mnożeniu i dodajemy pozostałe
$${8/3-1/1×1/2}/{5/2×2/3}=$$

Mnożymy ułamki
$${8/3-1/2}/{5/2×2/3}=$$

Następnie sprowadzamy do wspólnego mianownika
$${ {16}/6-3/6}/{5/2×2/3}=$$

I odejmujemy
$${ {13}/6}/{5/2×2/3}=$$

Mianownik:
Mnożymy liczniki i mianowniki ze sobą
$${ {13}/6}/{ {10}/6}= $$

Kreska ułamkowa to znak dzielenia, więc
$${13}/6÷ { {10}/6}=$$

Zamieniamy na mnożenie
$${13}/6×6/{10}=$$

Skracamy szóstki $${13}/1×1/{10}={13}/{10}$$

Spis treści

Rozwiązane zadania
W trójkącie KLM...

Rysunek poglądowy:

 

 

  

 

 

 

 

  

 

Wśród poniższych liczb wskaż liczby niewymierne

{premium}

 

 

Naszkicuj wykres funkcji f

Aby otrzymać wykres funkcji g, wystarczy odbić wykres funkcji f symetrycznie względem osi OX. 

 

Obliczamy współrzędne dwóch punktów o pierwszej współrzędnej mniejszej lub równej 0 - przez te punkty przejdzie wykres. 

 

Dla argumentów dodatnich funkcja jest stała i przymuje wartość 2. 

 

 

 

 

 

 

 

 

 

Obliczamy współrzędne dwóch punktów o pierwszej współrzędnej mniejszej lub równej 0 - przez te punkty przejdzie wykres. 

 

Obliczamy współrzędne dwóch punktów o pierwszej współrzędnej większej od 0 - przez te punkty przejdzie wykres. 

 

 

 

 

 

Obliczamy współrzędne dwóch punktów o pierwszej współrzędnej większej od -2 i niemniejszej niż 1 - przez te punkty przejdzie wykres. 

 

Obliczamy współrzędne dwóch punktów o pierwszej współrzędnej większej od 1 - przez te punkty przejdzie wykres. 

 

 

Na jakiej wysokości znajduje się samolot...

Rysunek poglądowy:

 

 

 

Z tabeli funkcji trygonometrycznych możemy odczytać przybliżoną wartość tangensa:

`tg \ 15^o approx 0,2679` 

A więc:

 

 

Oblicz

 

 

 

 

 

 

          

W 2006 roku zarejestrowano w Polsce ...

W Polsce w 2006 zarejestrowano 10 027 osób bedących przewodnikami turystycznymi.

 

1. Obliczmy, ilu przewodników ma uprawnienia do prowadzenia turystyki górskiej:

  

 

2. Obliczmy, ilu przewodników zna co najmniej jeden język obcy:

 

3. Obliczmy, ilu przewodników znających języki obce może być pilotami wycieczek:

Określ dziedzinę funkcji

 

 

 

 

Wskaż te nierówności

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nierówność jest zawsze prawdziwa, więc jest spełniona przez każdą liczbę rzeczywistą. Zbiorem rozwiązań jest więc zbiór liczb rzeczywistych.

 

 

 

 

 

 

 

 

Nierówność jest zawsze prawdziwa, więc jest spełniona przez każdą liczbę rzeczywistą. Zbiorem rozwiązań jest więc zbiór liczb rzeczywistych.

 

 

 

 

 

 

 

 

 

Powyższa nierówność jest fałszywa, więc zbiorem rozwiązań nierówności jest zbiór pusty. 

Zbiorem rozwiązań nierówności ...

 

 

 

 

 

  

 

   

Czy suma dwóch ułamków dziesiętnych

Każdy ułamek dziesiętny okresowy można przedstawić w postaci ułamka zwykłego (ćwiczyliśmy to w poprzednich zadaniach). Suma dwóch ułamków dziesiętnych okresowych jest więc sumą dwóch ułamków zwykłych, a suma dwóch ułamków zwykłych jest ułamkiem zwykłym.