Prawdopodobieństwo - iii-gimnazjum - Baza Wiedzy

Obliczanie prawdopodobieństw

Z doświadczeniami losowymi mamy do czynienia na co dzień. Rzut monetą, rzut sześcienną kostką do gry, wygrana na loterii czy numer nadjeżdżającego autobusu to tylko kilka z nich.

Zdarzenie losowe to pewna sytuacja możliwa do uzyskania podczas danego doświadczenia losowego, np. wyrzucenie parzystej liczby oczek na kostce do gry. 

W zdarzeniach losowych prawdopodobieństwo (oznaczmy go literą P) nastąpienia sytuacji, która nas interesuje oblicza się bardzo prosto (o ile każda z sytuacji jest jednakowo prawdopodobna). Jest to iloraz ilości sytuacji nas interesujących (np. autobusy nam odpowiadające) (ich ilość oznaczmy literą n) i ilości wszystkich możliwych sytuacji (np. wszystkie autobusy) (ich ilość oznaczmy literą N).

`P=n/N` 


Przykładowe zadania:

Zadanie 1.

Jakie jest prawdopodobieństwo wylosowanie króla z talii 52 kart?

Wiemy, że w talii są 52 karty. W całej talii są 4 króle. 

Wszystkich możliwych wyników jest więc 52. Liczba interesujących nas wyników to 4. 

Prawdopodobieństwo (p) tego zdarzenia wynosi:

`p=4/52=1/13` 

Odpowiedź: Prawdopodobieństwo, że wylosujemy króla wynosi `1/13`

Zadanie 2.

Stoimy na przystanku. Na tym przystanku zatrzymuje się łącznie 8 autobusów. My możemy jechać tylko autobusem numer 234 oraz 123. Nadjeżdża autobus. Jakie jest prawdopodobieństwo tego, że będzie to jeden z autobusów, którymi możemy pojechać?


Wszystkich możliwych wyników jest 8. Liczba interesujących nas wyników to 2. 

Prawdopodobieństwo (p) tego zdarzenia wynosi:

`p=2/8=1/4`  

Odpowiedź: Prawdopodobieństwo nadjechania autobusu, który nam odpowiada wynosi `1/4`.

Zadanie 3.

Rzucamy dwa razy sześcienną kostką do gry. Oblicz prawdopodobieństwo, że suma oczek wyniesie 6.

Rzucając kostką dwukrotnie otrzymujemy 36 róznych kombinacji. Przedstawione są one na tabelce:

tabela

Liczby, które spełniają nasz warunek (suma wynosi 6) zostały pogrubione. Jest ich w sumie 5. 

Wszystkich możliwych wyników jest 36. Liczba interesujących nas wyników to 5. 

Prawdopodobieństwo (p) tego zdarzenia wynosi:

`p=5/36`  

Odpowiedź: Prawdopodobieństwo wynosi `5/36`


Zadanie 4.

Ze zbioru liczb 1, 2, 3, 4, 5, 6, 7, ..., 19, 20 wybieramy losowo jedną liczbę. Oblicz prawdopodobieństwo, że wylosowana liczba jest podzielna przez 3.

Ze zbioru liczb 1, 2, 3, 4, 5, 6, 7, ..., 19, 20 (jest ich w sumie 20) wypisujemy wszystkie liczby podzielne przez 3, czyli: 3, 6, 9, 12, 15, 18. Jest ich w sumie 6. 

Wszystkich możliwych wyników jest 20. Liczba interesujących nas wyników to 6. 

Prawdopodobieństwo (p) tego zdarzenia wynosi: 
 
`p=6/20=3/10` 

Odpowiedź: Prawdopodobieństwo w tym przypadku wynosi `3/10`

Zadanie 5.

Rzucamy 2 razy monetą. Oblicz prawdopodobieństwo, że dwa razy wypadnie reszka.

Na początek musimy wypisać wszystkie możliwe kombinacje rzutów tak więc: 

  • Orzeł i Orzeł
  • Orzeł i Reszka
  • Reszka i Reszka
  • Reszka i Orzeł

Pogrubiona została kombinacja, która spełnia nasz warunek. 

Wszystkich możliwych wyników jest 4. Liczba interesujących nas wyników to 1. 

Prawdopodobieństwo (p) tego zdarzenia wynosi:

`p=1/4`  
Odpowiedź: Prawdopodobieństwo w tym przypadku wynosi `1/4` . 

 

Spis treści

Rozwiązane zadania
Oszacuj wyniki działań. Podkreśl jedną kreską działania, których wynik jest mniejszy od 50 (...)

 

 

Uzupełnij zdania: a) liczba 7·10⁶ jest .... razy większa od 7·10⁴.

a) Liczba `7*10^6`  jest 100 razy większa od `7*10^4`    (bo `(7*10^6)/(7*10^4)=(10^6)/(10^4)=10^6:10^4=10^(6-4)=10^2=10*10=100` )

 

b) Liczba `3,12*10^9` jest 1000 razy mniejsza od `3,12*10^12`   (bo `(3,12*10^12)/(3,12*10^9)=(10^12)/(10^9)=10^12:10^9=10^(12-9)=10^3=10*10*10=1000` )

 

c) Liczba `7,2*10^11` jest 6 razy większa od `1,2*10^11`   (bo `(7,2*10^11)/(1,2*10^11)=(7,2)/(1,2)=72/12=36/6=6/1=6` )

 

d) Liczba `3*10^8` jest 20 razy mniejsza od `6*10^9`   (bo `(6*10^9)/(3*10^8)=6/3*(10^9)/(10^8)=2*(10^9:10^8)=2*10^(9-8)=2*10^1=2*10=20` )    

Jeśli przeczytałeś notkę historyczną z podręcznika to wiesz, że w starożytnym Rzymie zasady (...)

MCCCCLXII oznacza 1462, poprawny zapis to MCDLXII

MCCCC to 1400 (4 liczby C zapisane obok siebie oznaczają 4 razy po 100)

{premium}

CCMXXXX oznacza 840, poprawny zapis to DCCCXL

CCM oznacza, że od 1000 (M) odejmujemy 200 (CC), ponieważ CC zapisano po lewej stronie M, XXXX oznacza 4 razy po 10, czyli 40

 

MIM oznacza 1999, poprawny zapis to MCMXCIX

IM oznacza 999, ponieważ I (1) zapisano na lewo od M (1000), a 1000-1=999

 

MMMCXXC oznacza 3180, poprawny zapis to MMMCLXXX

XXC oznacza 80, ponieważ XX (20) zapisano po lewej stronie C (100), co oznacza, że od 100 odejmujemy 20

Wstaw znak < lub >: a) (-5)⁷ ... 5⁶, (...)

Kilka przydatnych obserwacji:

1) przy podnoszeniu liczby ujemnej do potęgi parzystej minus znika, więc wynik jest dodatni, a przy podnoszeniu do potęgi nieparzystej wynik jest ujemny (np. `(-3)^2=(-3)*(-3)=9` , ale `(-3)^3=(-3)*(-3)*(-3)=9*(-3)=-27` ){premium}

2) podnoszenie liczby mniejszej od 1 do coraz większych potęg sprawia, że wynik jest coraz mniejszy (np. `0,1^2=0,1*0,1=0,01` , `0,1^3=0,1*0,1*0,1=0,001` , `0,001<0,01` )

3) podnoszenie liczby większej od 1 do coraz większych potęg sprawia, że wynik jest coraz większy (np. `2^2=2*2=4` , `2^3=2*2*2=8` , `8>2` )

4) podnoszenie liczby do potęgi ujemnej to podnoszenie do potęgi nieujemnej jej odwrotności (np. `(1/2)^(-2)=(2/1)^2=2^2=2*2=4`  ,  

  )

5) jeśli dwie różne liczby są podnoszone do takich samych potęg większych od 0, to większy wynik uzyskamy podnosząc do potęgi większą z nich (np. `3>2` , więc `3^100>2^100` )

 

 

 

  jest liczbą ujemną (patrz 1)), a `5^6` jest liczbą dodatnią, więc `(-5)^7<5^6` 

     (patrz 2))

   (patrz 3))

   (patrz 5)) 

 `e)\ 3^(-4)=(1/3)^4`   ,   `3^(-5)=(1/3)^5` ,   `3^(-4)>3^(-5)`     (patrz 2))

  ,  `(1/3)^(-5)=(3/1)^5=3^5` ,  `(1/3)^(-4)<(1/3)^(-5)`   (patrz 3))

 , więc `1/(1,2)>1/(1,21)` 

  `1,2^(-10)=(1/(1,2))^10` ,  `1,21^(-10)=(1/(1,21))^10` 

   (patrz 5))

 

 , więc `1/(0,8)>1/(0,81)` 

   (analogicznie jak g))  

Wykonaj obliczenia. Skreśl litery odpowiadające otrzymanym wynikom. Pozostałe litery, (...)

  

 `sqrt(2/10*20/1)=` `sqrt(2/1*2/1)=sqrt(2^2)=2` {premium}

 `(-12/10)=` `1/4+12/10=0,25+1,2=1,45` 

 `1/15*(-10/1)=` `-10/15=-2/3` 

  

 `1/3*1/3=1/9` 

 

Hasło: root

 

oblicz

a)

b)

c)

d)

e) (

f)

g)

h)

i)

j)

k)

l)

m)

n)

o)

Podaj nazwy liczb zapisanych poniżej: 5·10^9

to 5 miliardów{premium}

to 30 bilionów

to 1 biliard 

to 1 biliard

Przedstaw iloraz w postaci potęgi o wykładniku ujemnym

 ` `

 

Wskaż wspólne czynniki licznika i mianownika, a następnie wykonaj działania

Wykonaj działania

`[-7/3*(3/7)*(-1/8)]^(-2)=(-1/8)^(-2)=64`{premium}