Wyrażenia algebraiczne - 7-szkoly-podstawowej - Baza Wiedzy - Odrabiamy.pl

Wyrażenia algebraiczne - 7-szkoly-podstawowej - Baza Wiedzy

Wyrażenia algebraiczne

Wyrażenia algebraiczne to wyrażenia składające się z liczb, liter, znaków działań i nawiasów.

Przykłady:

  • `x+5` 

  • `x^2-y^2` 

  • `2+a` 

  • `3x-5y` 

  • `y^2` 

  • `1/2ah` 

  • `-3/4` 


Uwaga!

Wyrażenie `3*x` możemy zapisać prościej jako `3x`.

Wyrażenie `3*(m+n)` możemy zapisać prościej jako `3(m+n)` .


Uwaga!!

Jeśli w danym wyrażeniu po kropce oznaczającej znak mnożenia występuje liczba NIE WOLNO pominąć kropki. 

Wyrażenia  `3+x*5`  nie można zapisać jako `strike(3+x5)` . 

Wyrażenia `(3m+n)*7` nie można zapisać jako  `strike((3m+n)7)` . 


Przykładowe wyrażenia algebraiczne i sposób ich odczytywania.      

Wyrażenie algebraiczne (zapis) Nazwa (sposób odczytywania)
`3+b`  suma liczb 3 i b
`a+b`  suma liczb a i b
`a-b`  różnica liczb a i b
`x*y`  iloczyn liczb x i y
`m:2`  iloraz liczby m i 2 (iloraz liczby m przez 2)
`2y`  podwojona liczba y,
liczba dwa razy większa od y,
iloczyn liczb 2 i y
`3b`  potrojona liczba b,
liczba trzy razy większa od b,
iloczyn liczb 3 i b
`1/2a`  połowa liczby a
`1/3x`  trzecia część liczby x
`x^2`  kwadrat liczby x
`y^3`  sześcian liczby y
`-2xy`  iloczyn liczb -2, x i y
`x-12`  różnica liczb x i 12, 
liczba o 12 mniejsza od x

 

Wartości liczbowe wyrażeń algebraicznych

Aby obliczyć wartość liczbową wyrażenia algebraicznego należy w miejsce liter podstawić odpowiednie liczby.


Przykład:

Oblicz wartość liczbową wyrażenia `2y+3y^2-10 \ \ \ "dla" \ \ \ y=2` . 

W miejsce `y` wstawiamy 2.  

`2*2+3*2^2-10=4+3*4-10=4+12-10=16-10=6` 

Wartość wyrażenia `2y+3y^2-10 \ \ \ "dla" \ \ \ y=2`  wynosi 6. 

Jednomiany

W wyrażeniach algebraicznych poszczególne elementy, czyli pojedyncze litery, liczby lub iloczyny liczb i liter nazywamy jednomianami.

Przykłady jednomianów: 

`-7b, \ \ 4bk, \ \ 10z, \ \ 5t^2,  \ \ x, \ \ -5`   


Liczbę występującą w danym jednomianie nazywamy współczynnikiem liczbowym jednomianu.

Przykłady:

  • `13k^3 \ \ \ -> \ \ \ "współczynnik liczbowy: 13"` 

  • `-4xyz \ \ \ -> \ \ \ "współczynnik liczbowy: -4"`   

W celu przedstawienia wyrażenia algebraicznego w sposób bardziej przejrzysty należy uporządkować go, czyli doprowadzić do najprostszej postaci.

Pamiętaj aby w każdym z jednomianów najpierw stała liczba a następnie litera lub litery w kolejności alfabetycznej!

Przykłady:

  • `1/4*16x*x*3y=ul(1/4)*ul(16)*ul(ul(x))*ul(ul(x))*ul(3)*y=12*x^2*y=12x^2y`      

  • `(-15k)*(-3p)=ul((-15))*ul(ul(k))*ul((-3))*p=45*k*p=45kp`    

Sumy algebraiczne

Wyrażenie algebraiczne powstałe po dodaniu jednomianów nazywamy sumą algebraiczną.

Dodawane jednomiany noszą nazwę wyrazów sumy. Sumę algebraiczną możemy nazwać także wielomianem.


Przykłady sum algebraicznych:

  • `8k-5l-10q` 

  • `67r+(-9p)-3` 
     


Jeżeli podczas dodawania lub odejmowania jednomianów spotkamy się z jednomianami różniącymi się tylko współczynnikiem liczbowym lub kolejnością czynników wówczas mówimy, że jednomiany są podobne.

Dodawanie i odejmowanie tych jednomianów nazywamy redukcją wyrazów podobnych.


Przykłady jednomianów podobnych:

  • `4xy^2 \ "i" \ 16y^2x` 

  • `14nm \ "i" \ (-16)mn` 

  • `3k \ "i" \ 8k`   


Przykłady redukcji wyrazów podobnych:

  • `4xy-9xy=(-5)xy` 

  • `8y^2+19y^2=27y^2`  

Redukcja wyrazów podobnych

Jednomiany podobne to wyrazy sumy algebraicznej (sumy jednomianów) różniące się tylko współczynnikiem liczbowym.


Redukcja wyrazów podobnych
polega na dodaniu wyrazów podobnych.


Przykłady redukcji wyrazów podobnych:

  • `ul(2xy)+ul(ul(6z))-ul(10xy)+ul(ul(z))-k=-8xy+7z-k`  

    Jednomiany podobne to: 2xy i -10xy oraz 6z i z. 

  • `ul(8x)+ul(ul(2y))+ul(ul(ul(9x^2)))+7-ul(x)-ul(ul(3y))-ul(ul(ul(x^2)))=8x^2+7x-y+7` 

    Jednomiany podobne to: 9x2 i -x2, 8x i -x, 2y i -3y    

Dodawanie i odejmowanie sum algebraicznych

Dodawanie i odejmowanie sum algebraicznych to nic innego jak opuszczanie nawiasów i porządkowanie otrzymanego wyrażenia algebraicznego.

Przykłady:

  • `(x-y)+(4x-2y)=ul(x)-ul(ul(y))+ul(4x)-ul(ul(2y))=5x-3y`  

  • `7k-9m+(11m-4k)=ul(7k)-ul(ul(9m))+ul(ul(11m))-ul(4k)=3k+2m` 


Uwaga - ważna zasada!!!

Jeśli w sumie algebraicznej przed nawiasem znajduje się znak minus, to opuszczając nawias należy znaki wszystkich wyrazów z nawiasu zmienić na przeciwne. 

Przykłady:

  • `9l-10k-(11l+7k-11t)=ul(9l)-ul(ul(10k))-ul(11l)-ul(ul(7k))+11t=-2l-17k+11t`    

  • `8+2k-(6k+5m)=8+ul(2k)-ul(6k)-5m=8-4k-5m`  

Mnożenie jednomianów przez sumy algebraiczne

Mnożenie jednomianów przez sumy algebraiczne polega na pomnożeniu jednomianu przez każdy wyraz sumy.


Przykłady:

  • `9a(4c+9b)=9a*4c+9a*9b=36ac+81ab`  

  • `(a-bc)*5xy=a*5xy-bc*5xy=5axy-5bcxy`  

Mnożenie sum algebraicznych

Mnożenie sum algebraicznych jest bardzo podobne do mnożenia jednomianu przez sumę algebraiczną.

Wystarczy tylko pomnożyć każdy jednomian z pierwszej sumy przez wszystkie jednomiany z drugiej sumy i je dodać.

`(m+n)(k+l)=m(k+l)+n(k+l)=mk+ml+nk+nl` 


Schemat mnożenia sum algebraicznych: 


Przykłady:

  • `(3k-1)(2+t)=3k*2+3k*t+(-1)*2+(-1)*t=6k+3kt-2-t` 

  • `(6l-7b)(9r+4q)=6l*9r+6l*4q+(-7b)*(9r)+(-7b)*4q=54lr+24lq-63br-28bq`     

Wyłączanie wspólnego czynnika przed nawias

Mnożenie jednomianów i sum algebraicznych prowadziło do powstania sumy algebraicznej.

Czasami warto wykonać odwrotną operację czyli zamienić sumę algebraiczną na iloczyn jednomianu i krótszej sumy algebraicznej. Taką operację nazywamy wyłączaniem czynnika przed nawias.


Jak to zrobić? 

Mamy sumę:  `8xy+2x+9kx+17x` 

  1. Z każdego wyrazu sumy wybieramy powtarzający się element. W podanym przykładzie będzie to: `x` . 

    `8ul(x)y+2ul(x)+9kul(x)+17ul(x)`  

  2. Wyciągamy powtarzający się element przed nawias tak, by po pomnożeniu otrzymać początkową sumę algebraiczną.
    Z pozostałych elementów każdego jednomianu tworzymy sumę algebraiczną. 

    `x(8y+2+9k+17)`  


Przykłady:

  • `9x-3y+18k=ul(3)*3x+ul(3)*(-y)+ul(3)*6k=ul(3)(3x-y+6k)`  

  • `5kl+10xk-20qk=ul(5k)*l+ul(5k)*2x+ul(5k)*(-4q)=ul(5k)(l+2x-4q)`  

Zadania powtórzeniowe

Zadanie 1.

Michał ma n lat. Dwie siostry Michała są od niego młodsze: Ania o 3 lata, a Beata o 5 lat. Tata Michała jest od niego starszy o 30 lat, a mama o 28. Zapisz w postaci wyrażeń algebraicznych wiek sióstr i rodziców.

Ania: n-3

Beata: n-5

Tata: n+30

Mama: n+28
 

Zadanie 2.

Oblicz wartość poniższych wyrażeń dla $x=3$.

  1. $ 2x+5 $
  2. $ 2(x+5) $
  3. $ x(2+5) $
  1. $ 2x+5=2×3+5=6+5=11 $
  2. $ 2(x+5)=2(3+5)=2×8=16 $
  3. $ x(2+5)=3(2+5)=3×7=21 $

Zadanie 3.

Uporządkuj jednomiany:

  1. baba
  2. baca
  3. lelek
  4. jajo
  1. $ a^2 b^2 $
  2. $ a^2 bc $
  3. $ e^2 kl^2 $
  4. $ aj^2 o $

Zadanie 4.

Marcin ma x złotych, Jacek o 5 złotych więcej, a Olek trzy razy więcej niż Marcin. Ile pieniędzy mają w sumie?

Marcin -> $x$

Jacek -> $x+5$

Olek -> $3x$

$ x+(x+5)+3x=x+x+5+3x=5x+5$

Odp.: W sumie chłopcy mają $5x+5$ zł.

Zadanie 5.

Przekształć do postaci sumy algebraicznej wyrażenie:

  1. $ 2(a+b) $
  2. $ 3(x+2y-6) $
  3. $ -2(x+4-y+z) $
  1. $ 2(a+b)=2a+2b $
  2. $ 3(x+2y-6)=3x+6y-18 $
  3. $ -2(x+4-y+z)=-2x-8+2y-2z$

Zadanie 6.

Wyłącz wspólny czynnik przed nawias:

  1. $ 5a+10b-15c $
  2. $ 12x+5xy+8x^2 $
  3. $ -3k-6k^2-18klm $
  1. $ 5a+10b-15c=5(a+2b-3c) $
  2. $ 12x+5xy+8x^2=x(12+5y+8x) $
  3. $ -3k-6k^2-18klm=-3k(1+2k+6lm) $

Spis treści

Rozwiązane zadania
Oblicz według wzoru.

b) 1 cm2= 0,0001 m2{premium}
    900cm2=0,09 m2

c) 1km2=1000000 m2
    5km2=5000000 m2

d) 1m2=0,000001 km2
    300m2=0,0003 km2

Liczba ...

Poprawna odpowiedź:{premium} C. 0,4 ponieważ `root{3}{0,064}=root{3}{64/1000}=root{3}{64}/root{3}{1000}=4/10=0,4` 



Dane są liczby : 234,512; 157,567; 989,091...

 

 
 
{premium}  

 

 
 
 

 

 
 
 

 

 
 
 

Wynikiem działania ... jest:

{premium}

ODP: B

Aby zamienić temperaturę podaną w stopniach Celsjusza

{premium}

Znajdź liczbę całkowitą...

a)  {premium}  

Odp. n=42

 

b)  

Odp. n=3

 

c)  

Odp. n=6

Odra ma długość 854 km...

Obliczmy jaki % długości rzeki znajduje się w Polsce.

{premium}  

 

Nauczyciel matematyki chce zamówić uczniom ...

Koszt zakupu n podręczników po 24 zł za sztukę to:  {premium}

Koszt zakupu m zeszytów ćwiczeń po 8 zł za sztukę to:    

Za n podręczników i m zeszytów ćwiczeń musimy zapłacić:  


Obliczamy, ile należy zapłacić na 8 podręczników (n=8) i 6 zeszytów ćwiczeń (m=6).

 

Za 8 podręczników i 6 zeszytów ćwiczeń należy zapłacić 240 zł.   

Którego dnia tygodnia liczba uczniów klas I i II korzystających ze stołówki...

W poniedziałek liczba uczniów korzystających ze stołówki wynosiła:{premium} 45+44=89


We wtorek liczba uczniów korzystających ze stołówki wynosiła: 34+63=97


W środę liczba uczniów korzystających ze stołówki wynosiła: 66+25=91


W czwartek liczba uczniów korzystających ze stołówki wynosiła: 25+70=95


W piątek liczba uczniów korzystających ze stołówki wynosiła: 75+21=96


Odp. A

Wyraź w centymetrach. Wynik podaj...

 {premium}