Wyrażenia algebraiczne - 7-szkoly-podstawowej - Baza Wiedzy

Wyrażenia algebraiczne

Wyrażenia algebraiczne to wyrażenia składające się z liczb, liter, znaków działań i nawiasów.

Przykłady:

  • `x+5` 

  • `x^2-y^2` 

  • `2+a` 

  • `3x-5y` 

  • `y^2` 

  • `1/2ah` 

  • `-3/4` 


Uwaga!

Wyrażenie `3*x` możemy zapisać prościej jako `3x`.

Wyrażenie `3*(m+n)` możemy zapisać prościej jako `3(m+n)` .


Uwaga!!

Jeśli w danym wyrażeniu po kropce oznaczającej znak mnożenia występuje liczba NIE WOLNO pominąć kropki. 

Wyrażenia  `3+x*5`  nie można zapisać jako `strike(3+x5)` . 

Wyrażenia `(3m+n)*7` nie można zapisać jako  `strike((3m+n)7)` . 


Przykładowe wyrażenia algebraiczne i sposób ich odczytywania.      

Wyrażenie algebraiczne (zapis) Nazwa (sposób odczytywania)
`3+b`  suma liczb 3 i b
`a+b`  suma liczb a i b
`a-b`  różnica liczb a i b
`x*y`  iloczyn liczb x i y
`m:2`  iloraz liczby m i 2 (iloraz liczby m przez 2)
`2y`  podwojona liczba y,
liczba dwa razy większa od y,
iloczyn liczb 2 i y
`3b`  potrojona liczba b,
liczba trzy razy większa od b,
iloczyn liczb 3 i b
`1/2a`  połowa liczby a
`1/3x`  trzecia część liczby x
`x^2`  kwadrat liczby x
`y^3`  sześcian liczby y
`-2xy`  iloczyn liczb -2, x i y
`x-12`  różnica liczb x i 12, 
liczba o 12 mniejsza od x

 

Wartości liczbowe wyrażeń algebraicznych

Aby obliczyć wartość liczbową wyrażenia algebraicznego należy w miejsce liter podstawić odpowiednie liczby.


Przykład:

Oblicz wartość liczbową wyrażenia `2y+3y^2-10 \ \ \ "dla" \ \ \ y=2` . 

W miejsce `y` wstawiamy 2.  

`2*2+3*2^2-10=4+3*4-10=4+12-10=16-10=6` 

Wartość wyrażenia `2y+3y^2-10 \ \ \ "dla" \ \ \ y=2`  wynosi 6. 

Jednomiany

W wyrażeniach algebraicznych poszczególne elementy, czyli pojedyncze litery, liczby lub iloczyny liczb i liter nazywamy jednomianami.

Przykłady jednomianów: 

`-7b, \ \ 4bk, \ \ 10z, \ \ 5t^2,  \ \ x, \ \ -5`   


Liczbę występującą w danym jednomianie nazywamy współczynnikiem liczbowym jednomianu.

Przykłady:

  • `13k^3 \ \ \ -> \ \ \ "współczynnik liczbowy: 13"` 

  • `-4xyz \ \ \ -> \ \ \ "współczynnik liczbowy: -4"`   

W celu przedstawienia wyrażenia algebraicznego w sposób bardziej przejrzysty należy uporządkować go, czyli doprowadzić do najprostszej postaci.

Pamiętaj aby w każdym z jednomianów najpierw stała liczba a następnie litera lub litery w kolejności alfabetycznej!

Przykłady:

  • `1/4*16x*x*3y=ul(1/4)*ul(16)*ul(ul(x))*ul(ul(x))*ul(3)*y=12*x^2*y=12x^2y`      

  • `(-15k)*(-3p)=ul((-15))*ul(ul(k))*ul((-3))*p=45*k*p=45kp`    

Sumy algebraiczne

Wyrażenie algebraiczne powstałe po dodaniu jednomianów nazywamy sumą algebraiczną.

Dodawane jednomiany noszą nazwę wyrazów sumy. Sumę algebraiczną możemy nazwać także wielomianem.


Przykłady sum algebraicznych:

  • `8k-5l-10q` 

  • `67r+(-9p)-3` 
     


Jeżeli podczas dodawania lub odejmowania jednomianów spotkamy się z jednomianami różniącymi się tylko współczynnikiem liczbowym lub kolejnością czynników wówczas mówimy, że jednomiany są podobne.

Dodawanie i odejmowanie tych jednomianów nazywamy redukcją wyrazów podobnych.


Przykłady jednomianów podobnych:

  • `4xy^2 \ "i" \ 16y^2x` 

  • `14nm \ "i" \ (-16)mn` 

  • `3k \ "i" \ 8k`   


Przykłady redukcji wyrazów podobnych:

  • `4xy-9xy=(-5)xy` 

  • `8y^2+19y^2=27y^2`  

Redukcja wyrazów podobnych

Jednomiany podobne to wyrazy sumy algebraicznej (sumy jednomianów) różniące się tylko współczynnikiem liczbowym.


Redukcja wyrazów podobnych
polega na dodaniu wyrazów podobnych.


Przykłady redukcji wyrazów podobnych:

  • `ul(2xy)+ul(ul(6z))-ul(10xy)+ul(ul(z))-k=-8xy+7z-k`  

    Jednomiany podobne to: 2xy i -10xy oraz 6z i z. 

  • `ul(8x)+ul(ul(2y))+ul(ul(ul(9x^2)))+7-ul(x)-ul(ul(3y))-ul(ul(ul(x^2)))=8x^2+7x-y+7` 

    Jednomiany podobne to: 9x2 i -x2, 8x i -x, 2y i -3y    

Dodawanie i odejmowanie sum algebraicznych

Dodawanie i odejmowanie sum algebraicznych to nic innego jak opuszczanie nawiasów i porządkowanie otrzymanego wyrażenia algebraicznego.

Przykłady:

  • `(x-y)+(4x-2y)=ul(x)-ul(ul(y))+ul(4x)-ul(ul(2y))=5x-3y`  

  • `7k-9m+(11m-4k)=ul(7k)-ul(ul(9m))+ul(ul(11m))-ul(4k)=3k+2m` 


Uwaga - ważna zasada!!!

Jeśli w sumie algebraicznej przed nawiasem znajduje się znak minus, to opuszczając nawias należy znaki wszystkich wyrazów z nawiasu zmienić na przeciwne. 

Przykłady:

  • `9l-10k-(11l+7k-11t)=ul(9l)-ul(ul(10k))-ul(11l)-ul(ul(7k))+11t=-2l-17k+11t`    

  • `8+2k-(6k+5m)=8+ul(2k)-ul(6k)-5m=8-4k-5m`  

Mnożenie jednomianów przez sumy algebraiczne

Mnożenie jednomianów przez sumy algebraiczne polega na pomnożeniu jednomianu przez każdy wyraz sumy.


Przykłady:

  • `9a(4c+9b)=9a*4c+9a*9b=36ac+81ab`  

  • `(a-bc)*5xy=a*5xy-bc*5xy=5axy-5bcxy`  

Mnożenie sum algebraicznych

Mnożenie sum algebraicznych jest bardzo podobne do mnożenia jednomianu przez sumę algebraiczną.

Wystarczy tylko pomnożyć każdy jednomian z pierwszej sumy przez wszystkie jednomiany z drugiej sumy i je dodać.

`(m+n)(k+l)=m(k+l)+n(k+l)=mk+ml+nk+nl` 


Schemat mnożenia sum algebraicznych: 


Przykłady:

  • `(3k-1)(2+t)=3k*2+3k*t+(-1)*2+(-1)*t=6k+3kt-2-t` 

  • `(6l-7b)(9r+4q)=6l*9r+6l*4q+(-7b)*(9r)+(-7b)*4q=54lr+24lq-63br-28bq`     

Wyłączanie wspólnego czynnika przed nawias

Mnożenie jednomianów i sum algebraicznych prowadziło do powstania sumy algebraicznej.

Czasami warto wykonać odwrotną operację czyli zamienić sumę algebraiczną na iloczyn jednomianu i krótszej sumy algebraicznej. Taką operację nazywamy wyłączaniem czynnika przed nawias.


Jak to zrobić? 

Mamy sumę:  `8xy+2x+9kx+17x` 

  1. Z każdego wyrazu sumy wybieramy powtarzający się element. W podanym przykładzie będzie to: `x` . 

    `8ul(x)y+2ul(x)+9kul(x)+17ul(x)`  

  2. Wyciągamy powtarzający się element przed nawias tak, by po pomnożeniu otrzymać początkową sumę algebraiczną.
    Z pozostałych elementów każdego jednomianu tworzymy sumę algebraiczną. 

    `x(8y+2+9k+17)`  


Przykłady:

  • `9x-3y+18k=ul(3)*3x+ul(3)*(-y)+ul(3)*6k=ul(3)(3x-y+6k)`  

  • `5kl+10xk-20qk=ul(5k)*l+ul(5k)*2x+ul(5k)*(-4q)=ul(5k)(l+2x-4q)`  

Zadania powtórzeniowe

Zadanie 1.

Michał ma n lat. Dwie siostry Michała są od niego młodsze: Ania o 3 lata, a Beata o 5 lat. Tata Michała jest od niego starszy o 30 lat, a mama o 28. Zapisz w postaci wyrażeń algebraicznych wiek sióstr i rodziców.

Ania: n-3

Beata: n-5

Tata: n+30

Mama: n+28
 

Zadanie 2.

Oblicz wartość poniższych wyrażeń dla $$x=3$$.

  1. $$ 2x+5 $$
  2. $$ 2(x+5) $$
  3. $$ x(2+5) $$
  1. $$ 2x+5=2×3+5=6+5=11 $$
  2. $$ 2(x+5)=2(3+5)=2×8=16 $$
  3. $$ x(2+5)=3(2+5)=3×7=21 $$

Zadanie 3.

Uporządkuj jednomiany:

  1. baba
  2. baca
  3. lelek
  4. jajo
  1. $$ a^2 b^2 $$
  2. $$ a^2 bc $$
  3. $$ e^2 kl^2 $$
  4. $$ aj^2 o $$

Zadanie 4.

Marcin ma x złotych, Jacek o 5 złotych więcej, a Olek trzy razy więcej niż Marcin. Ile pieniędzy mają w sumie?

Marcin -> $$x$$

Jacek -> $$x+5$$

Olek -> $$3x$$

$$ x+(x+5)+3x=x+x+5+3x=5x+5$$

Odp.: W sumie chłopcy mają $$5x+5$$ zł.

Zadanie 5.

Przekształć do postaci sumy algebraicznej wyrażenie:

  1. $$ 2(a+b) $$
  2. $$ 3(x+2y-6) $$
  3. $$ -2(x+4-y+z) $$
  1. $$ 2(a+b)=2a+2b $$
  2. $$ 3(x+2y-6)=3x+6y-18 $$
  3. $$ -2(x+4-y+z)=-2x-8+2y-2z$$

Zadanie 6.

Wyłącz wspólny czynnik przed nawias:

  1. $$ 5a+10b-15c $$
  2. $$ 12x+5xy+8x^2 $$
  3. $$ -3k-6k^2-18klm $$
  1. $$ 5a+10b-15c=5(a+2b-3c) $$
  2. $$ 12x+5xy+8x^2=x(12+5y+8x) $$
  3. $$ -3k-6k^2-18klm=-3k(1+2k+6lm) $$

Spis treści

Rozwiązane zadania
W sali koncertowej Polskiej Filharmonii Bałtyckiej jest ...

W sali koncertowej Polskiej Filharmonii Bałtyckiej jest 1000 miejsc.

Przed sceną znajduje się 147 miejsc.

W sektorach B i C znajduje się po 239 miejsc.

W lożach znajdują się 53 miejsca.

 

a) Obliczamy, ile miejsc jest w sektorze A:

 

Obliczamy, jaki to procent wszystkich miejsc: 

 

Odp: W sektorze A znajduje się 322 miejsc. Miejsca te stanowią 32,2% wszystkich miejsc Polskiej Filharmonii.

 

b) Obliczamy, jakim procentem wszystkich miejsc są miejsca w każdym z sektorów B i C:

Odp: W każdym z sektorów B i C miejsca stanowią po 23,9% wszystkich miejsc Polskiej Filharmonii.

 

c) Obliczamy, ile procent miejsc zajmują słuchacze w lożach:

 

Odp: Słuchacze w lożach mają do dyspozycji 5,3% wszystkich miejsc.

Oblicz miary kątów α, ß i γ.

a) Suma miar kątów w trójkącie jest równa  , stąd:

 

 

  

 

b) Rysunek pomocniczy:

Przyjmujemy takie oznaczenia, jak na rysunku.

Korzystając z faktu, że suma miar kątów w trójkącie jest równa  wyznaczamy miarę kąta  :

 

Kąt  oraz kąt  są kątami przyległymi, więc suma ich miar jest równa  :

 

            

 

c) Rysunek pomocniczy:

Przyjmujemy takie oznaczenia, jak na rysunku.

Kąt  oraz kąt o mierze  są kątami naprzemianległymi, stąd:

   

Kąt  oraz kąt o mierze  są kątami przyległymi, więc suma ich miar jest równa  :

  

    

Kąt  oraz kąt  są kątami przyległymi, więc:

 

 

 

 

Wyznaczamy miarę kąta  korzystając z twierdzenia o sumie miar kątów w trójkącie:

 

 

Zapisz odpowiednie równania. a) Pan Rozrzutny miał x zł oszczędności

 oszczędności pana Rozrzutnego: x zł

kwota wypłacona w poniedziałek: 0,25x   zł{premium}

kwota wypłacona we wtorek: 0,25+60 zł

 

na konce zostało: 20 zł

 

Podane liczby są długościami boków trójkąta ...

Przeciwprostokątna to najdłuższy bok trójkąta prostokątnego.  

 

 

 

 

Liczba √5 wynosi więcej niż 2 i mniej niż 3. {premium}


Spośród podanych liczb największą jest 3, czyli przeciwprostokątna ma długość 3. 

 

 

b) Każdą z liczb podnosimy do kwadratu. Sprawdzamy, który z otrzymanych kwadratów liczb jest największy. 

 

 

 

Kwadrat liczby 4√3 jest większa, czyli liczba ta jest największa. 


Przeciwprostokątna tego trójkąta ma długość 4√3. 

    

 

c) Każdą z liczb podnosimy do kwadratu. Sprawdzamy, który z otrzymanych kwadratów liczb jest największy. 

 

 

 

Kwadrat liczby 7 jest większa, czyli liczba ta jest największa. 


Przeciwprostokątna tego trójkąta ma długość 7. 

    

Jaka jest setna cyfra po przecinku danej liczby?

 

Setna cyfra po przecinku to 7

 

 

Na nieparzystych miejscach (po przecinku) znajduje się cyfra 2.

Na parzystych miejscach (po przecinku) znajduje się cyfra 1.

Setne miejsce zajmuje miejsce parzyste, więc na setnym miejscu znajduje się cyfra 1

 

  

Na pierwszym, czwartym, siódmym itd. miejscu (po przecinku) znajduje się cyfra 3 - numer miejsca to liczba dająca resztę 1 przy dzieleniu przez 3. 

Na drugim, piątym, ósmym itd. miejscu (po przecinku) znajduje się cyfra 1 - numer miejsca to liczba dająca resztę 2 przy dzieleniu przez 3. 

Na trzecim, szóstym, dziewiątym itd. miejscu (po przecinku) znajduje się cyfra 4 - numer miejsca to liczba podzielna przez 3. 

Sprawdzamy, jaką resztę przy dzieleniu przez 3 daje liczba 100:

  

Stąd na setnym miejscu znajduje się cyfra 3

 

  

Dla miejsc od trzeciego w górę: 

Na trzecim, siódmym, jedenastym itd. miejscu (po przecinku) znajduje się cyfra 3 - numer miejsca to liczba dająca resztę 3 przy dzieleniu przez 4

Na czwartym, ósmym, dwunastym itd. miejscu (po przecinku) znajduje się cyfra 8 - numer miejsca to liczba podzielna przez 4

Na piątym, dziewiątym, trzynastym itd. miejscu (po przecinku) znajduje się cyfra 7 - numer miejsca to liczba dająca resztę 1 przy dzieleniu przez 4

Na szóstym, dziesiątym, czternastym itd. miejscu (po przecinku) znajduje się cyfra 2- numer miejsca to liczba dająca resztę 2 przy dzieleniu przez 4

Sprawdzamy, jaką resztę przy dzieleniu przez 4 daje liczba 100:

  

Stąd na setnym miejscu znajduje się cyfra 8

W pewnym sklepie jest 6 laptopów w cenie x zł każdy

6 laptopów w cenie x zł każdy kosztuje 6x zł. {premium}

11 tabletów w cenie y zł każdy kosztuje 11y zł.  

 

Obliczamy wartość dla x=3200 zł i y=240 zł

Dla podanych wartości x i y wartość sprzętu w tym sklepie jest równa 30 740 zł. 

Oblicz.

      {premium}

      

Wpisz w okienka odpowiednie cyfry tak, aby ...

Uwaga!!! Zadanie uzupełniamy kolumnami!!! 

Musimy wpisać w okienko taką cyfrę, aby podane zaokrąglenie było prawdziwe a liczba po lewej stronie znaku  jak najmniejsza. 

 {premium}

     

 


Musimy wpisać w okienko taką cyfrę, aby podane zaokrąglenie było prawdziwe a liczba po lewej stronie znaku  jak największa. 

 

 

   

Oblicz według wzoru.

a)  

b)  

c)  

d)  

e)  

f)  

g)  

h)  

i)  

j)  

k)  

l)  

Wybierz z ramki rozwiązania poniższych równań i ustaw je w kolejności malejącej...

 

 

 

 
{premium}