Statystyka - 7-szkoly-podstawowej - Baza Wiedzy - Odrabiamy.pl

Statystyka - 7-szkoly-podstawowej - Baza Wiedzy

Odczytywanie danych statystycznych

Statystyka to nauka zajmująca się zbieraniem i opracowywaniem różnego typu danych.

Dane statystyczne są zbierane po przeprowadzeniu wielu badań dotyczących tego samego zjawiska wśród dużej liczby osób.

Dane mogą być przedstawione za pomocą diagramów, tabelek lub też w sposób opisowy.
 

  1. Sposób opisowy

    W 2017 roku na wakacje za granicę wyjechało 50% wszystkich mieszkańców Polski. 30% mieszkańców udało się do Włoch, 10% do Hiszpanii, 4% wybrało Bułgarię a 3% Egipt. Pozostałe 3% mieszkańców wyjechało do krajów innych niż wymienione.

  2. Tabela

    Miejsce wakacji  Procent mieszkańców
    Polska (w kraju) 50%
    Włochy 30%
    Hiszpania 10%
    Bułgaria 4%
    Egipt 3%
    inne 3%


  3. Diagram



 

Średnia i mediana

Średnia arytmetyczna to średni wynik spośród wielu innych wyników.


Sposób obliczania średniej: 

`"średnia"=("suma wyników")/("liczba wyników")` 

Średnia arytmetyczna danego zestawu liczb to iloraz sumy tych liczb przez ich ilość. 

Przykład:

W klasie 7a jest 10 osób. Na koniec roku szkolnego uczniowie tej klasy uzyskali z matematyki następujące oceny: 6, 6, 5, 5, 5, 4, 3, 3, 3, 2. 

Ile wynosiła średnia ocen z matematyki na koniec roku w tej klasie?  

`"średnia"=(6+6+5+5+5+4+3+3+3+2)/10=42/10=4,2` 

Odpowiedź: Średnia ocen z matematyki na koniec roku w tej klasie wynosiła 4,2.


 

Mediana to wynik środkowy uporządkowanego malejąco lub rosnąco zbioru wyników.

  • Jeśli mamy nieparzystą liczbę wyników, to mediana jest wyrazem środkowym. 

  • Jeśli mamy parzystą liczbę wyników, to mediana jest średnią arytmetyczną dwóch środkowych wyrazów. 

 
Przykład:

W klasie 7a jest 10 osób. Na koniec roku szkolnego uczniowie tej klasy uzyskali z matematyki następujące oceny: 6, 6, 5, 5, 5, 4, 3, 3, 3, 2. 

Jaka jest mediana ocen na koniec roku z matematyki w tej klasie?

Oceny ustawiamy w kolejności malejącej: 6, 6, 5, 5, 5, 4, 3, 3, 2. Jest ich 10, czyli parzysta ilość. 

Mediana będzie więc średnią arytmetyczną dwóch środkowych wyników. 

`"mediana"=(5+4)/2=9/2=4,5`  

Odpowiedź: Mediana ocen na koniec roku w tej klasie wynosi 4,5.

Zdarzenia losowe

Z doświadczeniami losowymi mamy do czynienia na co dzień. Rzut monetą, rzut sześcienną kostką do gry, wygrana na loterii czy numer nadjeżdżającego autobusu to tylko kilka z nich.

Zdarzenie losowe to pewna sytuacja możliwa do uzyskania podczas danego doświadczenia losowego, np. wyrzucenie parzystej liczby oczek na kostce do gry. 

W zdarzeniach losowych prawdopodobieństwo (oznaczmy go literą P) nastąpienia sytuacji, która nas interesuje oblicza się bardzo prosto (o ile każda z sytuacji jest jednakowo prawdopodobna). Jest to iloraz ilości sytuacji nas interesujących (np. autobusy nam odpowiadające) (ich ilość oznaczmy literą n) i ilości wszystkich możliwych sytuacji (np. wszystkie autobusy) (ich ilość oznaczmy literą N).

`P=n/N` 


Przykładowe zadania:

Zadanie 1.

Jakie jest prawdopodobieństwo wylosowanie króla z talii 52 kart?

Wiemy, że w talii są 52 karty. W całej talii są 4 króle. 

Wszystkich możliwych wyników jest więc 52. Liczba interesujących nas wyników to 4. 

Prawdopodobieństwo (p) tego zdarzenia wynosi:

`p=4/52=1/13` 

Odpowiedź: Prawdopodobieństwo, że wylosujemy króla wynosi `1/13`

Zadanie 2.

Stoimy na przystanku. Na tym przystanku zatrzymuje się łącznie 8 autobusów. My możemy jechać tylko autobusem numer 234 oraz 123. Nadjeżdża autobus. Jakie jest prawdopodobieństwo tego, że będzie to jeden z autobusów, którymi możemy pojechać?


Wszystkich możliwych wyników jest 8. Liczba interesujących nas wyników to 2. 

Prawdopodobieństwo (p) tego zdarzenia wynosi:

`p=2/8=1/4`  

Odpowiedź: Prawdopodobieństwo nadjechania autobusu, który nam odpowiada wynosi `1/4`.

Zadanie 3.

Rzucamy dwa razy sześcienną kostką do gry. Oblicz prawdopodobieństwo, że suma oczek wyniesie 6.

Rzucając kostką dwukrotnie otrzymujemy 36 róznych kombinacji. Przedstawione są one na tabelce:

tabela

Liczby, które spełniają nasz warunek (suma wynosi 6) zostały pogrubione. Jest ich w sumie 5. 

Wszystkich możliwych wyników jest 36. Liczba interesujących nas wyników to 5. 

Prawdopodobieństwo (p) tego zdarzenia wynosi:

`p=5/36`  

Odpowiedź: Prawdopodobieństwo wynosi `5/36`


Zadanie 4.

Ze zbioru liczb 1, 2, 3, 4, 5, 6, 7, ..., 19, 20 wybieramy losowo jedną liczbę. Oblicz prawdopodobieństwo, że wylosowana liczba jest podzielna przez 3.

Ze zbioru liczb 1, 2, 3, 4, 5, 6, 7, ..., 19, 20 (jest ich w sumie 20) wypisujemy wszystkie liczby podzielne przez 3, czyli: 3, 6, 9, 12, 15, 18. Jest ich w sumie 6. 

Wszystkich możliwych wyników jest 20. Liczba interesujących nas wyników to 6. 

Prawdopodobieństwo (p) tego zdarzenia wynosi: 
 
`p=6/20=3/10` 

Odpowiedź: Prawdopodobieństwo w tym przypadku wynosi `3/10`

Zadanie 5.

Rzucamy 2 razy monetą. Oblicz prawdopodobieństwo, że dwa razy wypadnie reszka.

Na początek musimy wypisać wszystkie możliwe kombinacje rzutów tak więc: 

  • Orzeł i Orzeł
  • Orzeł i Reszka
  • Reszka i Reszka
  • Reszka i Orzeł

Pogrubiona została kombinacja, która spełnia nasz warunek. 

Wszystkich możliwych wyników jest 4. Liczba interesujących nas wyników to 1. 

Prawdopodobieństwo (p) tego zdarzenia wynosi:

`p=1/4`  
Odpowiedź: Prawdopodobieństwo w tym przypadku wynosi `1/4` . 

 

Zadania powtórzeniowe

Zadanie 1.

Oblicz średnią liczb: 1,2,4,5,3,4,2,3,4,5,2,1.

$ Śr= {1+2+4+5+3+4+2+3+4+5+2+1}/12={36}/{12}=3 $

Odp.: Średnia tych liczb wynosi 3.

Zadanie 2.

Oblicz medianę liczb: 1,2,2,3,4,4,5,6,7,12,45,55.

Jest parzysta ilość cyfr, więc należy obliczyć średnią dwóch środkowych liczb.

${4+5}/2=9/2=4,5$

Odp.: Mediana tych liczb wynosi 4,5.

Zadanie 3.

Rzucasz jedną sześcienną kostką do gry. Oblicz, jakie jest prawdopodobieństwo, że wynik będzie:

  1. parzysty
  2. nieparzysty
  3. liczbą podzielną przez 3

W sumie może być 6 wyników.

  1. parzystych możliwości jest 3 -> prawdopodobieństwo: $3/6=1/2$
  2. nieparzystych możliwości jest 3 -> prawdopodobieństwo: $3/6=1/2$
  3. liczb podzielnych przez 3 jest 2 -> prawdopodobieństwo: $2/6=1/3$

Zadanie 4.

W klasie Stasia i Małgosi jest 36 osób. Staś ma numer w dzienniku 17, a Małgosia 12. Stasio zaproponował nauczycielowi, że przed każdym wezwaniem do tablicy będzie rzucał dwiema sześciennymi kostkami do gry. Iloczyn wyrzuconych oczek będzie wyznaczał osobę z tym numerem w dzienniku do odpowiedzi. Małgosia natomiast zaprotestowała twierdząc, że to niesprawiedliwe. Wyjaśnij, dlaczego Małgosia uważa, że to niesprawiedliwe i dlaczego ma wyjść na tym najgorzej?

Nie jest to sprawiedliwy sposób, ponieważ każda liczba w dzienniku ma inną liczbę dzielników, przez co jest mniej lub bardziej prawdopodobne wylosowania tej osoby. Niektórych numerów nie będzie można wcale wyznaczyć. Na przykład, numer Stasia 17, można uzyskać tylko poprzez pomnożenia 1 i 17, a takie liczby nie występują na kostkach do gry. Natomiast numer Małgosi można uzyskać poprzez pomnożenie największej ilości kombinacji cyfr.

$12$ -> $2×6$; $3×4$; $4×3$; $6×2$

$17$ -> $1×17$

Zadanie 5.

Jakie jest prawdopodobieństwo, że z pomiędzy damy trefl, damy pik i króla trefl wylosujemy damę?

wszystkie możliwe karty -> 3

ilość dam -> 2

prawdopodobieństwo -> $2/3$

Odp.: Prawdopodobieństwo wylosowania damy jest równe $2/3$.

Zadanie 6.

Ułóż taki zestaw 5 liczb, w którym średnia będzie równa medianie.

Zaczynam od ustalenia sobie średniej i mediany. Wybieram sobie 3.

Tak na razie wygląda ciąg moich liczb: --3--.

Następnie wybieram takie liczby by 1 i 5 oraz 2 i 4 dawały średnią 3. Należy pamiętać, że 1 i 2 nie może być większe od 3, a 4 i 5 nie może być mniejsze od 3.

Tak wyglądają przykładowe liczby: 1,3,3,3,5 lub 1,2,3,4,5.

Spis treści

Rozwiązane zadania
Znajdź pierwszą współrzędną punktu S, jeśli ...

  - pierwsza współrzędna punktu S 

Druga współrzędna punktu S wynosi {premium}-4. Punkt S ma współrzędne .   

Odległość punktu S od początku układu współrzędnych wynosi 

Zatem: 

   

 

 

 

    

  


Odpowiedź: Pierwsza współrzędna punktu S wynosi 4 lub -4. Są dwa rozwiązania.     

Objętość sześcianu jest równa objętości ...

Obliczamy, ile wynosi objętość prostopadłościanu (Vp) o krawędziach długości 2 cm, 4 cm i 8 cm. 

 {premium}


Objętość sześcianu (Vs) jest równa objętości prostopadłościanu. 

 


Obliczamy, ile wynosi długość krawędzi (a) tego sześcianu.   

 

 

Krawędź sześcianu ma długość 4 cm. 


Poprawna odpowiedź: B. 4 cm 

Dokończ zdanie tak, aby otrzymać ...

Obliczamy ile wynosi wartość podanego iloczynu. {premium}

 


Poprawna odpowiedź: C. 1,8٠1016

Dany jest czworokąt o wierzchołkach: ...

W układzie współrzędnych zaznaczamy punkty A B, C i D. Rysujemy czworokąt ABCD. 

a) Wyznaczamy taki punkt E, aby punkt A był środkiem odcinka EB. 

Analogicznie wyznaczamy punkty F, G i H. {premium}

Współrzędne punktów E, F, G i H to: 

  •  

  •  

  •  

  •      



b) Czworokąt EFGH jest kwadratem. 

 

Boki tego kwadratu są przeciwprostokątnymi trójkątów prostokątnych o przyprostokątnych długości 1 i 7. 

Korzystając z twierdzenia Pitagorasa obliczamy ile wynoszą długości boków tego kwadratu. 

 

 

 

 

Zatem: 

 


Pole tego czworokąta wynosi: 

 


Odpowiedź: Pole czworokąta EFGH wynosi 50.       

Pokój Agnieszki ma wymiary 270 cm x 320 cm . Oblicz:

 

a)

Pole podłogi równa się 8,64 m²{premium}

 

b)

Długość listew wynosi 9,5 m

 

c)

Szerokość regału wynosi 1,26 m

 

d) 

Wymiary blatu biurka to 1,2 m na 0,6 m

Zapisz liczbę w systemie rzymskim.

 

 {premium}

 

 

 

 

 

Wyznacz okres następujących...

{premium}  

 

 

 

Oblicz w pamięci.

Przypomnijmy:

Mnożąc/dzieląc daną liczbę przez 10, 100, 1000 ... przesuwamy przecinek o tyle miejsc w prawo/lewo,

ile zer znajduje się w dzielniku.

 

 

{premium}

Wartość liczbowa wyrażenia 1000 a + 100 b + c...

Obliczmy wartość tego wyrażenia:   {premium}

 




Odp. C 

Wyraź w hektarach obszar .a Polski

a) {premium}

b)

c)