Równania - 7-szkoly-podstawowej - Baza Wiedzy - Odrabiamy.pl

Równania - 7-szkoly-podstawowej - Baza Wiedzy

Liczby spełniające równania

Litery w równaniu oznaczają liczby, których nie znamy, czyli niewiadome

Liczby odpowiadające tym niewiadomym nazywamy liczbami spełniającymi równanie lub pierwiastkami równania.

Przykłady

  • równanie  `x+6=10`  spełnia liczba `4`, gdyż  `4+6=10`, czyli `x=4` 

  • równanie  `2x+1=1`  spełnia liczba `0`, gdyż  `2*0+1=0+1=1`, czyli `x=1`     



Równania z jedną niewiadomą mogą:

  • nie mieć żadnego rozwiązania - równania sprzeczne;

  • mieć jedno rozwiązanie;

  • mieć nieskończenie wiele rozwiązań - równania tożsamościowe.  

Przykłady: 

  • równanie  `x+5=0`  ma jedno rozwiązanie, spełnia je liczba  `-5` , czyli  `x=-5`   

  • równanie  `x+2=x+1`  nie ma rozwiązania, nie spełnia go żadna liczba - równanie sprzeczne

  • równanie  `x+2=2+x`  ma nieskończenie wiele rozwiązań, spełnia go każda liczba  - równanie tożsamościowe



Zbiór liczb spełniających równanie to zbiór rozwiązań równania

Jeśli dwa równania mają taki sam zbiór rozwiązań, to są to równania równoważne

Przykład: 

  • równania  `x+2=5`  i  `x-3=0`  są równoważne, gdyż rozwiązaniem każdego z nich jest liczba 3 

Sposoby rozwiązywania równań

Aby obliczyć jaka liczba spełnia równanie należy je rozwiązać.

Najprostszą metodą rozwiązywania równań jest metoda równań równoważnych.

Polega ona na dodaniu/odjęciu tego samego wyrażenia od obu stron równania lub na pomnożeniu/podzieleniu przez tę samą liczbę (różną od zera) obu stron równania.

Przykłady:

  1. dodanie tego samego wyrażenia

    `x-10=14 \ \ \ \ \ \ \ \ |+10`   

    `x=24`    (dodaliśmy do obu stron równania liczbę 10)

  2. odjęcie tego samego wyrażenia

    `y+13=23 \ \ \ \ \ \ \ \ |-13` 

    `y=10`    (odjęliśmy od obu stron równania liczbę 13)

  3. pomnożenie przez tę samą liczbę

    `0,5x=7 \ \ \ \ \ \ \ \ |*2`  

    `x=14`     (pomnożyliśmy obie strony równania razy 2)

  4. podzielenie przez tę samą liczbę

    `3x=27 \ \ \ \ \ \ \ \ |:3`  

    `x=9`    (podzieliliśmy obie strony równania przez 3)

Przekształcanie wzorów

Przekształcanie wzorów służy do wyznaczenia określonej niewiadomej.

Przy przekształcaniu wzorów postępujemy tak samo jak przy rozwiązywaniu równań. Wykonujemy więc czynności takie jak dodawanie / odejmowanie od obu stron tego samego wyrażenia lub mnożenie / dzielenie obu stron przez to samo wyrażenie.

Przykłady:

  1. dodawanie / odejmowanie tego samego wyrażenia

    Ze wzoru  `z+p=k`  wyznaczamy zmienną  `z` 

    `z+p=k \ \ \ \ \ \ \ \ |-p`   

    `z=k-p` 

    Ze wzoru  `k-5=x`  wyznaczamy zmienną  `k`  

    `k-5=x \ \ \ \ \ \ \ \ |+5`  

    `k=x+5`  

  2. mnożenie / dzielenie przez to samo wyrażenie

    Ze wzoru  `m/z=y+l` , gdzie `z!=0`, wyznaczamy zmienną  `m`   
    `m/z=y+l \ \ \ \ \ \ \ \ |*z`  

    `m=(y+l)*z`  

    Ze wzoru  `dt=x+5`  wyznaczamy zmienną  `d`   

    `dt=x+5 \ \ \ \ \ \ \ \ |:t \ \ \ \ \ t!=0` 

    `d=(x+5)/t`     

 

Zadania powtórzeniowe

Zadanie 1.

Rozwiąż równanie:

  1. $ x+5=10 $
  2. $ 2x+3=15 $
  3. $ 5x+13=23 $
  1. $ x+5=10 $
    $ x=5 $
  2. $ 2x+3=15 $
    $ 2x=12 $
    $ x=6 $

  3. $ 5x+13=23 $
    $ 5x=10 $
    $ x=2 $

Zadanie 2.

Ułóż i rozwiąż odpowiednie równanie:
Liczba o 3 większa od x jest 3 razy większa od x.

$ x+3=3x $
$ 3=2x $
$ x=1,5 $

Zadanie 3.

Tata Zosi jest od niej 3 razy starszy, a Zosia jest od niego młodsza o 30 lat. Ile lat ma Zosia?

x -> wiek Zosi
$ x+30 $ lub $ 3x$ -> wiek taty Zosi
$ x+30=3x $
$ 2x=30 $
$ x=15 $
Odp.: Zosia ma 15 lat.

Zadanie 4.

Julek i Zosia są w sumie o 6 lat starsi od swojego brata Michała, ale każde z nich z osobna jest od niego młodsze: Julek o 7 lat, Zosia o 2 lata. Ile lat mają w sumie wszyscy troje?

$ x $ -> wiek Michała
$ x-7 $ -> wiek Julka
$ x-2 $ -> wiek Zosi
$ x-7+x-2=x+6 $
$ 2x-9=x+6 $
$ x=15 $ -> wszyscy: $ 15+8+13=36$
Odp.: Wszyscy troje mają razem 36 lat.

Zadanie 5.

Ile trzeba użyć soli, aby po zmieszaniu z 150 g wody otrzymać roztwór o stężeniu $ 6,25% $ ?

x -> potrzebna sól

$ x/{150+x}×100%=6,25% $

$ x={6,25}/{100} (150+x) $

$ x=9,375+0,0625x $

$ 0,9375x=9,375 $

$ x=10 g $
Odp.: Trzeba użyć 10 g soli, aby otrzymać 6,25% rozwór.

Zadanie 6.

Ustal, ile liczb naturalnych spełnia nierówność $ 2x < x+3$.

$ 2x < x+3 $
$ x<3 $ -> spełniają je liczby: 0,1,2
Odp.: Tą nierówność spełniają 3 liczby naturalne - 0,1,2.

Spis treści

Rozwiązane zadania
Jeden bok trójkąta ma długość 6 dm

Obliczamy długość wysokości: 

{premium}

 

Trójkąty w skali 1:10 będą miały 10 razy krótszą podstawę i wysokość. 

 

Trójkąty w skali 1:10 będą mieć podstawę 6 cm i wysokość 4 cm. 

 

Dane są dwie liczby x i y...

Różnica   będzie miała najmniejsza możliwą wartość, {premium}jeżeli  a  

Obliczmy tę różnicę:

 

Prawidłowa odpowiedź to      

Oblicz.

 
 {premium}
 
 
 
 
 
 
 
 
 
 

Jaka największa kwota wpłynęła na konto rodziny?

Z wykresu możemy odczytać, że największa kwota jaka wpłynęła na konto rodziny to 2000 zł.


Odp. C

Karol pisał pod koniec semestru trzy ...

Obliczamy, ile procent wszystkich punktów zdobył Karol z testu z języka polskiego:

Obliczamy, ile procent wszystkich punktów zdobył Karol z testu z języka angielskiego:{premium}

Obliczamy, ile procent wszystkich punktów zdobył Karol z testu z matematyki:

 

Odp: Karol zaliczył język polski i język angielski. 

Oblicz (skróć, jeśli to możliwe):

 {premium}
 
 

Zapisz wyrażenie w postaci potęgi o podstawie...

 {premium}

 

 

 

 

 

Na rysunkach przedstawiono graniastosłupy

 

Na obwiązanie paczki zużyto wstążkę składającą się z 4 odcinków po 20 cm i 4 odcinków po 30 cm oraz  kokardę, która została zrobiona z 30 cm wstążki, czyli razem:

{premium}  

 

  

 

 

Na obwiązanie paczki zużyto wstążkę składającą się z 4 odcinków po 60 cm i 12 odcinków po 10 cm oraz kokardę, która została zrobiona z 30 cm wstążki, czyli razem:

 

Dwudziestokąt ma trzynaście boków o długości...

Dwudziestokąt ma  boków. {premium}Jeżeli trzynaście boków ma długość  to  boków ma długość  

Obwód jest równy:

        

Pani Ewa kupiła 75 dag cukierków po 20 zł...

Obliczmy ile pieniędzy wydała na cukierki pani Ewa:

{premium}  


Ile kilogramów cukierków kupiła pani Ewa:

 


obliczmy średnią wartość 1 kg cukierków kupionych przez panią Ewę:

 

Odp. Średnia wartość 1 kg cukierków wynosiła 22 zł.