Elementy algebry - 6-szkoly-podstawowej - Baza Wiedzy

Wyrażenia algebraiczne

Wyrażenia algebraiczne to wyrażenia składające się z liczb, liter, znaków działań i nawiasów.

Przykłady:

  • `x+5` 

  • `x^2-y^2` 

  • `2+a` 

  • `3x-5y` 

  • `y^2` 

  • `1/2ah` 

  • `-3/4` 


Uwaga!

Wyrażenie `3*x` możemy zapisać prościej jako `3x`.

Wyrażenie `3*(m+n)` możemy zapisać prościej jako `3(m+n)` .


Uwaga!!

Jeśli w danym wyrażeniu po kropce oznaczającej znak mnożenia występuje liczba NIE WOLNO pominąć kropki. 

Wyrażenia  `3+x*5`  nie można zapisać jako `strike(3+x5)` . 

Wyrażenia `(3m+n)*7` nie można zapisać jako  `strike((3m+n)7)` . 


Przykładowe wyrażenia algebraiczne i sposób ich odczytywania.      

Wyrażenie algebraiczne (zapis) Nazwa (sposób odczytywania)
`3+b`  suma liczb 3 i b
`a+b`  suma liczb a i b
`a-b`  różnica liczb a i b
`x*y`  iloczyn liczb x i y
`m:2`  iloraz liczby m i 2 (iloraz liczby m przez 2)
`2y`  podwojona liczba y,
liczba dwa razy większa od y,
iloczyn liczb 2 i y
`3b`  potrojona liczba b,
liczba trzy razy większa od b,
iloczyn liczb 3 i b
`1/2a`  połowa liczby a
`1/3x`  trzecia część liczby x
`x^2`  kwadrat liczby x
`y^3`  sześcian liczby y
`-2xy`  iloczyn liczb -2, x i y
`x-12`  różnica liczb x i 12, 
liczba o 12 mniejsza od x

 

Obliczanie wartości wyrażeń algebraicznych

Aby obliczyć wartość liczbową wyrażenia algebraicznego należy w miejsce liter (czyli nieznanych liczb) podstawić konkretne liczby (tzn. daną wartość liczbową), a następnie wykonać działania, pamiętając o kolejności wykonywania działań.

Przykład:

  • Obliczyć wartość liczbową wyrażenia $$3a+9-2b$$ dla $$a=2$$ i $$b=-3$$.

    $$3a+9-2b=3•2+9-2•(-3)=6+9+6=21$$

Jednomiany i sumy algebraiczne

  1. Jednomiany

    Jednomian to wyrażenie algebraiczne, które jest pojedynczą literą, liczbą lub iloczynem liczb i liter.

    Przykłady wyrażeń algebraicznych, będących jednomianami: 3a, 4b, 8ac, 5, a, xy, $$1/2•x$$, $$3b^2$$.

    Przykłady wyrażeń algebraicznych, nie będących jednomianami: 3a + 5b, a + b, $$3b^2 + 1$$


    Jednomian zapisujemy w postaci uporządkowanej, tzn. najpierw liczba (współczynnik liczbowy), potem litery w kolejności alfabetycznej. Taki jednomian jest bardziej czytelny.

    Przykład:
    $$x•(-3)•y•2=-6xy$$ ← -6 to współczynnik liczbowy


    Zapisując jednomiany przyjmujemy następujące zasady:

    • Znaku mnożenia stojącego przed literą lub nawiasem nie piszemy, np. zamiast 3•x piszemy 3x, zamiast 3•(m+n)piszemy 3(m+n),
    • Współczynnik 1 również jest pomijany, np. 1•x zapisujemy jako x.
     

    Jednomiany podobne (wyrazy podobne) to jednomiany różniące się co najwyżej współczynnikiem liczbowym.

    Przykłady jednomianów podobnych: $$3x^3$$, $$-5x^3$$, 4,$$5x^3$$

     

    Dodawanie i odejmowanie jednomianów podobnych

    Na podstawie rozdzielności mnożenia względem dodawania (odejmowania) możemy dodawać i odejmować jednomiany podobne, wykonując rachunki na ich współczynnikach liczbowych.

    Przykład: $$3x^2 + 5x^2 = 8x^2$$
     

  2. Suma algebraiczna

    Suma algebraiczna – wyrażenie, które jest sumą lub różnicą kilku jednomianów. Jednomiany występujące w tej sumie nazywamy wyrazami sumy algebraicznej.

    Przykład sumy algebraicznej: $$7a+8c−9+k$$.

Redukcja wyrazów podobnych

Jednomiany podobne to wyrazy sumy algebraicznej (sumy jednomianów) różniące się tylko współczynnikiem liczbowym.


Redukcja wyrazów podobnych
polega na dodaniu wyrazów podobnych.


Przykłady redukcji wyrazów podobnych:

  • `ul(2xy)+ul(ul(6z))-ul(10xy)+ul(ul(z))-k=-8xy+7z-k`  

    Jednomiany podobne to: 2xy i -10xy oraz 6z i z. 

  • `ul(8x)+ul(ul(2y))+ul(ul(ul(9x^2)))+7-ul(x)-ul(ul(3y))-ul(ul(ul(x^2)))=8x^2+7x-y+7` 

    Jednomiany podobne to: 9x2 i -x2, 8x i -x, 2y i -3y    

Zadania powtórzeniowe

Zadanie 1.

Zapisz wyrażenia:

  1. suma liczby 2a i 9
  2. różnica b i a
  3. iloczyn x i y
  1. $$2a+9$$
  2. $$b-a$$
  3. $$x•y$$

Zadanie 2.

Wypisz wszystkie jednomiany, z których zbudowana jest suma $$3a^3+7-6b$$.

$$3a^3+7-6b$$ -> jednomiany: $$3a^3$$, $$7$$, $$-6b$$

Zadanie 3.

Zredukuj wyrazy podobne:

  1. $$ 2a-3a $$
  2. $$ 4bc-6x+7bc-10x $$
  1. $$ 2a-3a=-a $$
  2. $$ 4bc-6x+7bc-10x=11bc-16x $$

Zadanie 4.

Oblicz pole trójkąta prostokątnego, którego jedna z przyprostokątnych ma długość a cm, a druga jest o 3 cm krótsza.

$$a$$ -> jedna przyprostokątna

$$a-3$$ -> druga przyprostokątna

$$P=1/2•a•(a-3)={a^2-3a}/2 $$

Odp.: Pole tego trójkąta prostokątnego ma pole równe $${a^2-3a}/2$$ [$$j^2$$].

Zadanie 5.

Oblicz średnią arytmetyczną liczb $$3x+2$$; $$3x-1$$; $$3x+8$$.

$${3x+2+ 3x-1+ 3x+8}/3={9x+9}/3=3x+3$$

Odp.: Średnia arytmetyczna tych liczb jest równa $$3x+3$$.

Zadanie 6.

Uporządkuj jednomiany w wyrażeniu: $$2/5a • 2,5a •(-5)a$$.

$$2/5 a • 2,5a • (−5)a$$

W powyższym wyrażeniu współczynniki liczbowe są zapisane w formie ułamków zwykłych oraz dziesiętnych.
Zacznijmy od sprowadzenia ułamków do takiej samej postaci – zamienimy ułamek zwykły $$2/5$$ na ułamek dziesiętny:
$$2/5= 4/{10}= 0,4$$

Możemy zapisać:
$$2/5 a • 2,5a • (−5)a = 0,4a • 2,5a • (-5)a = - (0,4 • 2,5 •5)•(a•a•a)=-5•a^3=-5a^3$$

Odp.: Dane wyrażenie przyjmuje postać $$-5a^3$$.

Spis treści

Rozwiązane zadania
Znajdź rozwinięcie dziesiętnego ułamka 7/15.

Rozwiąż równania (aby obliczyć odjemną, należy dodać odjemnik i różnicę).

 
 
 
 


 

 
 
 
 


 
 
 
 


 

 

 

 

 
 


 
 
 
 


      
 

Podane procenty przedstaw w postaci ułamków dziesiętnych:

Z przedstawionego obok wykresu można odczytać, jaką drogę pokonał słoń poruszający...

Z wykresu możemy odczytać, że:


Punkt S wykresu informuje, że słoń pokonał 8 km w ciągu 1 godziny. P


Punkt Ł wykresu informuje, że słoń pokonał 16 km w ciągu 2 godzin. P


Punkt O wykresu informuje, że słoń pokonał 32 km w ciągu 3 godzin. F

(Punkt O wykresu informuje, że słoń pokonał 24 km w ciągu 3 godzin.)

W sklepiku szkolnym Michał kupił trzy zeszyty i dwa ołówki, a Franek...

x zł- cena jednego zeszytu
y zł - cena jednego długopisu

Zakupy Michała:

  •  trzy zeszyty po x zł każdy, czyli 3x zł- kwotą, którą chłopiec zapłaci za zeszyty
  •  dwa ołówki po y zł każdy, czyli 2y zł- kwota, którą chłopiec zapłaci za ołówki

Michał zapłaci za zakupy:
3x+2y [zł]



Zakupy Franka:

  •  pięć zeszytów po x zł każdy, czyli 5x zł- kwotą, którą chłopiec zapłaci za zeszyty
  •  cztery ołówki po y zł każdy, czyli 4y zł- kwota, którą chłopiec zapłaci za ołówki

Franek zapłaci za zakupy:
5x+4y [zł]

 

Woda miała w przybliżeniu objętości

0,6 kg - masa wody 

1 litr wody waży około 1 kg


Objętość wody wynosiła więc: 

   


Poprawna odpowiedź: A. 600 ml

Wartość bezwzględna sumy -36+22 jest równa.

|-36+22|=|-14|=14

Odpowiedź B.

Dopasuj opisy słowne do wzorów

{premium}

Oblicz wartości wyrażeń. Pamiętaj ...

 

 

 

   

 

 

 

 

 

 

 

 

Spośród liczb podanych obok wybierz

{premium}