Pola figury - 4-szkoly-podstawowej - Baza Wiedzy

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2 $$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm$$; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$

Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Zadania powtórzeniowe

Zadanie 1.

Pokój Kasi ma kształt prostokąta o wymiarach 6 m i 3 m. Pokój Kacpra ma kształt kwadratu o boku 4 m. Który pokój ma większą powierzchnię?

$$P_1 = 6m•3m = 18m^2$$ → pole powierzchni pokoju Kasi

$$P_2 = 4m•4 m=16m^2$$ → pole powierzchni pokoju Kacpra

$$P_1 = 18m^2$$ > $$16m^2 = P_2$$

Odp.: Pokój Kasi ma większą powierzchnię.

Zadanie 2.

Pan Zbychu liczy sobie 20 zł za wyłożenie 1 $$m^2$$ terakoty. Ile zarobi Pan Zbychu za wyłożenie terakotą kuchni o wymiarach 4 m i 5 m?

$$P=4•5=20 m^2$$ -> pole powierzchni kuchni

$$20 m^2•20{zł}/{m^2} =400 $$

Odp.: Pan Zbychu zarobi 400 zł.

Zadanie 3.

Oblicz pole kwadratu o obwodzie 48 cm.

$$Obw=48 cm$$
$$Obw=4a$$
$$4a=48 cm$$  |:4
$$a=12cm$$

$$P=a^2=12^2=144 cm^2$$

Odp.: Pole tego kwadratu wynosi 144 $$cm^2$$.

Zadanie 4.

Z 12 jednakowych kwadratów o polu 1 $$cm^2$$ budujemy prostokąt. Podaj wymiary, jakie może przyjmować ten prostokąt.

$$P=12•1 cm^2=12 cm^2$$ -> pole prostokąta

Zapiszmy w jaki sposób możemy zapisać liczbę 12 jako iloczyn dwóch liczb naturalnych:

12=2•6=6•2; 12=3•4=4•3; 12=12•1=1•12

Odp.: Zbudowany prostokąt może mieć wymiary $$2x6$$ cm, $$3x4$$ cm lub $$12x1$$ cm.

Zadanie 5.

Oblicz pole prostokąta o wymiarach:

  1. 2 m i 3 m
  2. 4 cm i 8 cm
  3. 1 km i 10 km
  1. $$P=2 m•3 m=6 m^2 $$
  2. $$P=4 cm•8 cm=32 cm^2 $$
  3. $$P=1 km•10 km=10 km^2 $$

Zadanie 6.

Jeden z boków prostokąta ma długość 7 cm, a drugi bok jest o 2 cm dłuższy. Jakie pole ma ten prostokąt?

a -> $$7$$ cm

b -> $$7+2=9$$ cm

$$P=a•b=7•9=63 cm^2$$

Odp.: Ten prostokąt ma pole 63 $$cm^2$$.

Zadanie 7.

Oblicz pole powierzchni prostokąta o wymiarach 15 dm i 25 cm.

Zauważmy, że boki są wyrażone w różnych jednostkach. Przed wykonaniem obliczeń musimy je ujednolicić – zamieńmy dm na cm.

$$15 dm = 15•10cm= 150 cm$$

Prostokąt ma wymiary 150 cm i 25 cm. Policzmy jego pole:

$$P =a•b=150cm•25cm= 3750cm^2 = 3750•0,01dm^2 = 37,5 dm^2$$

Odp.: Pole tego prostokąta jest równe 37,5 $$dm^2$$.

Spis treści

Rozwiązane zadania
Model pomnika wykonany w skali...

Jeżeli model pomnika jest wykonany w skali 1:6, to oznacza to, że jego wymiary są 6 razy mniejsze niż naturalnie (czyli pomnik naturalnej wielkości jest 6 razy większy niż model). Obliczmy jak duży jest pomnik:

 

Odpowiedź: Pomnik ma 900 cm, czyli 9 m wysokości.

W beczce mieści się...

całkowita pojemność beczki ( w litrach) `80`

całkowita pojemność wiadra ( w litrach ) `80:10=8`

pojemność połowy beczki( w litrach ) `80:2=40`

pojemność trzech wiader  w litrach )` 3*8=24` 

liczba litrów wody w beczce napełnionej przez pana Nowaka:  `40+24=64`

liczba litrów wody, które można jeszcze wlać do beczki: `80-64=16` 

Odp. Można wlać jeszcze 16 l wody . 

 

Przeczytaj powyższe informacje.

`a) \ 1/7 \ \ < \ \ 1/2`

`\ \ \ 3/7 \ \ < \ \ 1/2`

`\ \ \ 2/9 \ \ < \ \ 1/2`

`\ \ \ 3/11 \ \ < \ \ 1/2`

`\ \ \ 9/20 \ \ < \ \ 1/2`

Powyższe ułamki są mniejsze od 1/2, gdyż liczniki tych ułamków są mniejsze od połowy mianownika. 
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 

`\ \ \ 4/7 \ \ > \ \ 1/2`

`\ \ \ 5/7 \ \ > \ \ 1/2`

`\ \ \ 6/7 \ \ > \ \ 1/2`

`\ \ \ 8/10 \ \ > \ \ 1/2`

` \ \ \ 12/15 \ \ > \ \ 1/2`

Powyższe ułamki są większe od 1/2, gdyż liczniki tych ułamków są większe od połowy mianownika.
`ul(ul(ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))))` 


`b) \ 1/9 \ \ < \ \ 1/2` 

`\ \ \ 2/9 \ \ < \ \ 1/2` 

`\ \ \ 3/9 \ \ < \ \ 1/2` 

`\ \ \ 4/9 \ \ < \ \ 1/2` 

Powyższe ułamki są mniejsze od 1/2, gdyż liczniki tych ułamków są mniejsze od połowy mianownika, czyli od 4,5. 

Każdą z podanych wielkości wyraź za pomocą

`a)\ 50\ m=500\ dm=5000\ cm`

`b)\ 21\ km=21\ 000\ m=210\ 000\ dm`

`c)\ 4000\ mm=400\ cm=4\ m`

`d)\ 200\ 000\ cm=2000\ m=2\ km`

Okrąg o promieniu 4 cm narysowano w pewnej ...

Promień wyjściowego okręgu ma długość 4 cm. Średnica tego okręgu ma więc długość: `2*4 \ "cm"=8 \ "cm"`

Wyjściowy okrąg narysowano w pewnej skali. Otrzymano okrąg, którego średnica ma długość 8 cm. 


Zauważmy, że średnica wyjściowego okręgu oraz średnica otrzymanego okręgu mają taką samą długość wynoszącą 8 cm. 

Oznacza to, że okrąg narysowano w skali 1:1.  


Poprawna odpowiedź: C. 1:1

Babcia Zosia swój wiek zapisała...

Babcia Zosia zapisałą swój wiek następująco:

`XXIX+XXXVIII` 

Możemy te liczby zapisać cyframi arabskimi w następujący sposób:

`29+38=67` 

 

Odpowiedź: Babcia Zosia ma 67 lat 

Zegar wskazuje ...

a) 

za godzinę 10:45

za półgodziny 10:15

za godzinę i 20 minut 11:05

za 6 godzin  16:45

b)

dwie godziny temu 7:45

kwadrans temu 9:30

półtorej godziny temu 8:15

 pięć godzin temu 4:45

Jaką część trójkąta zamalowano na rysunku?

Duży trójkąt został podzielony na 16 małych trójkącików. 

Zamalowano 6 małych trójkącików. 

Zamalowane trójkąciki stanowią `6/16 \ stackrel(::2)= \ 3/8` figury.   

Czołgiem jedzie 4 pancernych

`13*4=10*4+3*4=40+12=52`

Wpisz odpowiedni ułamek...

a) 7m 25 cm =7,25m

b) 3km 164m=3,164km

c) 10m 9cm = 10,09m

d) 2km 87m=2,087km

e) 6cm 9 mm = 6,9cm

f) 3km 50m=3,050km

g) 1m 47cm=1,47m

h) 2 dm 8 cm = 2,8dm