Pola figury - 4-szkoly-podstawowej - Baza Wiedzy - Odrabiamy.pl

Pola figury - 4-szkoly-podstawowej - Baza Wiedzy

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $1 mm^2$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $1 mm^2$
  • $1 cm^2$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $cm^2$
  • $1 dm^2$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $1 dm^2$
  • $1 m^2$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $1 m^2$
  • $1 km^2$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $1 km^2$
  • $1 a$ (ar) → pole kwadratu o boku 10 m jest równe 100 $m^2$
  • $1 ha$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $m^2$

Zależności między jednostkami pola:

  • $1 cm^2 = 100 mm^2$ ; $1 mm^2 = 0,01 cm^2$
  • $1 dm^2 = 100 cm^2 = 10 000 mm^2$; $1 cm^2 = 0,01 dm^2$
  • $1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$; $1 dm^2 = 0,01 m^2$
  • $1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$; $1 ha = 0,01 km^2$
  • $1 a = 100 m^2$; $1 m^2 = 0,01 a$
  • $1 ha = 100 a = 10 000 m^2$; $1 a = 0,01 ha$

Przykłady wyprowadzania powyższych zależności:

  • $1 cm^2 = 10mm•10mm=100$ $mm^2$
  • $1 cm^2 = 0,1dm•0,1dm=0,01$ $dm^2$
  • $1 km^2 = 1000m•1000m=1000000$ $m^2$

Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $P = a•b$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $P=a•a=a^2$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $ P=2 cm•4 cm=8 cm^2 $
    Pole tego prostokąta jest równe 8 $cm^2$.

Zadania powtórzeniowe

Zadanie 1.

Pokój Kasi ma kształt prostokąta o wymiarach 6 m i 3 m. Pokój Kacpra ma kształt kwadratu o boku 4 m. Który pokój ma większą powierzchnię?

$P_1 = 6m•3m = 18m^2$ → pole powierzchni pokoju Kasi

$P_2 = 4m•4 m=16m^2$ → pole powierzchni pokoju Kacpra

$P_1 = 18m^2$ > $16m^2 = P_2$

Odp.: Pokój Kasi ma większą powierzchnię.

Zadanie 2.

Pan Zbychu liczy sobie 20 zł za wyłożenie 1 $m^2$ terakoty. Ile zarobi Pan Zbychu za wyłożenie terakotą kuchni o wymiarach 4 m i 5 m?

$P=4•5=20 m^2$ -> pole powierzchni kuchni

$20 m^2•20{zł}/{m^2} =400 $

Odp.: Pan Zbychu zarobi 400 zł.

Zadanie 3.

Oblicz pole kwadratu o obwodzie 48 cm.

$Obw=48 cm$
$Obw=4a$
$4a=48 cm$  |:4
$a=12cm$

$P=a^2=12^2=144 cm^2$

Odp.: Pole tego kwadratu wynosi 144 $cm^2$.

Zadanie 4.

Z 12 jednakowych kwadratów o polu 1 $cm^2$ budujemy prostokąt. Podaj wymiary, jakie może przyjmować ten prostokąt.

$P=12•1 cm^2=12 cm^2$ -> pole prostokąta

Zapiszmy w jaki sposób możemy zapisać liczbę 12 jako iloczyn dwóch liczb naturalnych:

12=2•6=6•2; 12=3•4=4•3; 12=12•1=1•12

Odp.: Zbudowany prostokąt może mieć wymiary $2x6$ cm, $3x4$ cm lub $12x1$ cm.

Zadanie 5.

Oblicz pole prostokąta o wymiarach:

  1. 2 m i 3 m
  2. 4 cm i 8 cm
  3. 1 km i 10 km
  1. $P=2 m•3 m=6 m^2 $
  2. $P=4 cm•8 cm=32 cm^2 $
  3. $P=1 km•10 km=10 km^2 $

Zadanie 6.

Jeden z boków prostokąta ma długość 7 cm, a drugi bok jest o 2 cm dłuższy. Jakie pole ma ten prostokąt?

a -> $7$ cm

b -> $7+2=9$ cm

$P=a•b=7•9=63 cm^2$

Odp.: Ten prostokąt ma pole 63 $cm^2$.

Zadanie 7.

Oblicz pole powierzchni prostokąta o wymiarach 15 dm i 25 cm.

Zauważmy, że boki są wyrażone w różnych jednostkach. Przed wykonaniem obliczeń musimy je ujednolicić – zamieńmy dm na cm.

$15 dm = 15•10cm= 150 cm$

Prostokąt ma wymiary 150 cm i 25 cm. Policzmy jego pole:

$P =a•b=150cm•25cm= 3750cm^2 = 3750•0,01dm^2 = 37,5 dm^2$

Odp.: Pole tego prostokąta jest równe 37,5 $dm^2$.

Spis treści

Rozwiązane zadania
Wykonaj pisemne dzielenie 1642:6.



1642:6=273 r. 4{premium}

1643:6=273 r. 5

1644:6=274 r. 0

1645:6=274 r. 1

1646:6=274 r. 2

1647:6=274 r. 3

1648:6=274 r. 4

1649:6=274 r. 5

 

Jakie wymiary ma żółta

{premium}

 

Prostopadłościan ma po dwie ściany każdego rodzaju, obliczamy pole powierzchni tego prostopadłościanu: 

 

Zosia ma 40 zł oszczędności...

Dane:

40 zł - tyle oszczędności miała Zosia, 

24 zł - tyle wydała na książkę,

9,50 zł - tyle wydała na kino.

Szukane:

Ile pieniędzy jej zostało?

Rozwiązanie:

Zapisujemy działanie:

 

Najpierw wykonujemy działanie z nawiasu i obliczamy, ile oszczędności wydała Zosia:{premium}

a następnie odejmujemy wynik od 40 zł i obliczamy, ile pieniędzy jej zostało:

Odpowiedź: Zosi zostało 6,50 zł oszczędności. 

Ogród ma kształt prostokąta o wymiarach 60 m i 50 m. Ile ...

Prostokątny ogród ma 60 m długości i 50 m szerokości. 

Obliczamy, ile wynosi obwód tego ogrodu. {premium}

 

Obwód ogrodu wynosi 220 m. Oznacza to, że ogrodzenie tego ogrodu ma długość 220 m. 


Poprawna odpowiedź: D. 220 m.  

O ile dni więcej ma ...

Obliczamy, ile dni mają  tygodnie.{premium}


Rok zwykły ma  dni, a przestępny -  dni, więc rok ma o  lub o  dni więcej niż  tygodnie.


Odpowiedź: Rok ma o  dzień lub o  dni więcej niż  tygodnie.

a) Oblicz, o ile złotych obniżono ceny towarów

{premium}

 

ODP: Cenę kamery obniżono o 1400 zł, cenę telewizora o 150 zł, cenę lodówki o 400 zł, a cenę zmywarki o 200 zł.

 

 

Obliczamy, ile zapłacili państwo Wolscy:

 

Obliczamy, ile zaoszczędzili (korzystając z informacji z a)

 

ODP: Państwo Wolscy zapłacili 2700 zł, dzięki obniżkom zaoszczędzili 600 zł.  

 

Oblicz:

{premium}

Wskaż poprawne dokończenie zdania...

B. 1 kwietnia

Oblicz obwód i pole prostokąta...

Dane:

 

Szukane:

 

Rozwiązanie:

Najpierw obliczmy długość drugiego boku prostokąta:

 

Teraz możemy obliczyć pole prostokąta:{premium}

 

oraz obwód:

 

Odpowiedź: Pole prostokąta wynosi 242 cm2, a jego obwód wynosi 66 cm. 

a) Jest godzina 11:45. Która godzina będzie za...

 Jest godzina 11.45 obliczmy, która będzie godzina za 6 godzin i 12 minut:{premium}

  




 Jest godzina 14.19 obliczmy, która była godzina 3 godziny i 25 minut temu: