Pola figury - 4-szkoly-podstawowej - Baza Wiedzy

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2$$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm^2$$ ; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$

Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Zadania powtórzeniowe

Zadanie 1.

Pokój Kasi ma kształt prostokąta o wymiarach 6 m i 3 m. Pokój Kacpra ma kształt kwadratu o boku 4 m. Który pokój ma większą powierzchnię?

$$P_1 = 6m•3m = 18m^2$$ → pole powierzchni pokoju Kasi

$$P_2 = 4m•4 m=16m^2$$ → pole powierzchni pokoju Kacpra

$$P_1 = 18m^2$$ > $$16m^2 = P_2$$

Odp.: Pokój Kasi ma większą powierzchnię.

Zadanie 2.

Pan Zbychu liczy sobie 20 zł za wyłożenie 1 $$m^2$$ terakoty. Ile zarobi Pan Zbychu za wyłożenie terakotą kuchni o wymiarach 4 m i 5 m?

$$P=4•5=20 m^2$$ -> pole powierzchni kuchni

$$20 m^2•20{zł}/{m^2} =400 $$

Odp.: Pan Zbychu zarobi 400 zł.

Zadanie 3.

Oblicz pole kwadratu o obwodzie 48 cm.

$$Obw=48 cm$$
$$Obw=4a$$
$$4a=48 cm$$  |:4
$$a=12cm$$

$$P=a^2=12^2=144 cm^2$$

Odp.: Pole tego kwadratu wynosi 144 $$cm^2$$.

Zadanie 4.

Z 12 jednakowych kwadratów o polu 1 $$cm^2$$ budujemy prostokąt. Podaj wymiary, jakie może przyjmować ten prostokąt.

$$P=12•1 cm^2=12 cm^2$$ -> pole prostokąta

Zapiszmy w jaki sposób możemy zapisać liczbę 12 jako iloczyn dwóch liczb naturalnych:

12=2•6=6•2; 12=3•4=4•3; 12=12•1=1•12

Odp.: Zbudowany prostokąt może mieć wymiary $$2x6$$ cm, $$3x4$$ cm lub $$12x1$$ cm.

Zadanie 5.

Oblicz pole prostokąta o wymiarach:

  1. 2 m i 3 m
  2. 4 cm i 8 cm
  3. 1 km i 10 km
  1. $$P=2 m•3 m=6 m^2 $$
  2. $$P=4 cm•8 cm=32 cm^2 $$
  3. $$P=1 km•10 km=10 km^2 $$

Zadanie 6.

Jeden z boków prostokąta ma długość 7 cm, a drugi bok jest o 2 cm dłuższy. Jakie pole ma ten prostokąt?

a -> $$7$$ cm

b -> $$7+2=9$$ cm

$$P=a•b=7•9=63 cm^2$$

Odp.: Ten prostokąt ma pole 63 $$cm^2$$.

Zadanie 7.

Oblicz pole powierzchni prostokąta o wymiarach 15 dm i 25 cm.

Zauważmy, że boki są wyrażone w różnych jednostkach. Przed wykonaniem obliczeń musimy je ujednolicić – zamieńmy dm na cm.

$$15 dm = 15•10cm= 150 cm$$

Prostokąt ma wymiary 150 cm i 25 cm. Policzmy jego pole:

$$P =a•b=150cm•25cm= 3750cm^2 = 3750•0,01dm^2 = 37,5 dm^2$$

Odp.: Pole tego prostokąta jest równe 37,5 $$dm^2$$.

Spis treści

Rozwiązane zadania
Wykonaj dodawanie...

a) 

 

ST

DT

JT

S

D

J

  1 2 3 6 5
  5 6 4 3 4
  6 8 7 9 9

b) 

ST

DT

JT

S

D

J

1 0 2 3 0 5
  8 6 5 9 0
1 8 8 8 9 5
Wskaż liczbę...

Odp. D 

Trzy takie same prostokątne działki...

Mamy trzy takie same działki o wymiarach 30 m x 60 m. Działki te przylegają do siebie przynajmniej jednym bokiem. Działki otoczono murem. Obliczmy długość muru:

Przypadek I

Działki stykają się krótszym bokiem

Obliczmy obwód tak stworzonej parceli

 

 

Obwód tej parceli wynosi 420 m, a więc taką długość będzie miał otaczający ją mur. 

 

Przypadek II

Działki stykają się dłuższym bokiem

Obliczmy obwód tej parceli

 

 

Obwód tej parceli wynosi 300 m, a więc mur ją otaczający będzie miał długość 300 m

Oblicz pole kwadratu o podanym...

a) 4 cm

 

 

 

Bok kwadratu ma długość 1 cm. Obliczmy pole kwadratu:

 

Długość boku kwadratu wynosi 1 cm, a jego pole jest równe 1 cm2

 

b) 8 m

 

 

 

Bok kwadratu ma długość 2 m. Obliczmy pole kwadratu:

 

Długość boku kwadratu wynosi 2 m, a jego pole jest równe 4 m2  

 

c) 24 dm

 

  

 

Bok kwadratu ma długość 6 dm. Obliczmy pole kwadratu:

 

Długość boku kwadratu wynosi 6 dm, a jego pole jest równe 36 dm2

 

d) 36 mm

 

 

 

Bok kwadratu ma długość 9 mm. Obliczmy pole kwadratu:

 

Długość boku kwadratu wynosi 9 mm, a jego pole jest równe 81 mm2  

Słoń indyjski potrzebuje dziennie 150 kg pożywienia...

Obliczam ile kg zjada słoń w 30 dni :{premium}`150*30=4500 \ "[kg]"`

Odp. W czasie 30 dni słoń zjada 4500 kg.

Podziel cukierki na...

Oblicz sumę i iloczyn cyfr ...

Nasza liczba to 2015. 


Obliczamy ile wynosi suma cyfr tej liczby. 

 


Obliczamy ile wynosi iloczyn cyfr tej liczby: 

 


Odpowiedź: Suma cyfr wynosi 8,  a ich iloczyn jest równy 0.   

Uzupełnij:

Skróć ułamki.

{premium}

Odkryj, w jaki sposób można obliczyć liczby, których brakuje na osiach...

{premium}