Pola figury - 3-szkoly-podstawowej - Baza Wiedzy - Odrabiamy.pl

Pola figury - 3-szkoly-podstawowej - Baza Wiedzy

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $1 mm^2$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $1 mm^2$
  • $1 cm^2$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $cm^2$
  • $1 dm^2$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $1 dm^2$
  • $1 m^2$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $1 m^2$
  • $1 km^2$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $1 km^2$
  • $1 a$ (ar) → pole kwadratu o boku 10 m jest równe 100 $m^2$
  • $1 ha$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $m^2$

Zależności między jednostkami pola:

  • $1 cm^2 = 100 mm^2$ ; $1 mm^2 = 0,01 cm^2$
  • $1 dm^2 = 100 cm^2 = 10 000 mm^2$; $1 cm^2 = 0,01 dm^2$
  • $1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$; $1 dm^2 = 0,01 m^2$
  • $1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$; $1 ha = 0,01 km^2$
  • $1 a = 100 m^2$; $1 m^2 = 0,01 a$
  • $1 ha = 100 a = 10 000 m^2$; $1 a = 0,01 ha$

Przykłady wyprowadzania powyższych zależności:

  • $1 cm^2 = 10mm•10mm=100$ $mm^2$
  • $1 cm^2 = 0,1dm•0,1dm=0,01$ $dm^2$
  • $1 km^2 = 1000m•1000m=1000000$ $m^2$

Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $P = a•b$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $P=a•a=a^2$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $ P=2 cm•4 cm=8 cm^2 $
    Pole tego prostokąta jest równe 8 $cm^2$.

Zadania powtórzeniowe

Zadanie 1.

Pokój Kasi ma kształt prostokąta o wymiarach 6 m i 3 m. Pokój Kacpra ma kształt kwadratu o boku 4 m. Który pokój ma większą powierzchnię?

$P_1 = 6m•3m = 18m^2$ → pole powierzchni pokoju Kasi

$P_2 = 4m•4 m=16m^2$ → pole powierzchni pokoju Kacpra

$P_1 = 18m^2$ > $16m^2 = P_2$

Odp.: Pokój Kasi ma większą powierzchnię.

Zadanie 2.

Pan Zbychu liczy sobie 20 zł za wyłożenie 1 $m^2$ terakoty. Ile zarobi Pan Zbychu za wyłożenie terakotą kuchni o wymiarach 4 m i 5 m?

$P=4•5=20 m^2$ -> pole powierzchni kuchni

$20 m^2•20{zł}/{m^2} =400 $

Odp.: Pan Zbychu zarobi 400 zł.

Zadanie 3.

Oblicz pole kwadratu o obwodzie 48 cm.

$Obw=48 cm$
$Obw=4a$
$4a=48 cm$  |:4
$a=12cm$

$P=a^2=12^2=144 cm^2$

Odp.: Pole tego kwadratu wynosi 144 $cm^2$.

Zadanie 4.

Z 12 jednakowych kwadratów o polu 1 $cm^2$ budujemy prostokąt. Podaj wymiary, jakie może przyjmować ten prostokąt.

$P=12•1 cm^2=12 cm^2$ -> pole prostokąta

Zapiszmy w jaki sposób możemy zapisać liczbę 12 jako iloczyn dwóch liczb naturalnych:

12=2•6=6•2; 12=3•4=4•3; 12=12•1=1•12

Odp.: Zbudowany prostokąt może mieć wymiary $2x6$ cm, $3x4$ cm lub $12x1$ cm.

Zadanie 5.

Oblicz pole prostokąta o wymiarach:

  1. 2 m i 3 m
  2. 4 cm i 8 cm
  3. 1 km i 10 km
  1. $P=2 m•3 m=6 m^2 $
  2. $P=4 cm•8 cm=32 cm^2 $
  3. $P=1 km•10 km=10 km^2 $

Zadanie 6.

Jeden z boków prostokąta ma długość 7 cm, a drugi bok jest o 2 cm dłuższy. Jakie pole ma ten prostokąt?

a -> $7$ cm

b -> $7+2=9$ cm

$P=a•b=7•9=63 cm^2$

Odp.: Ten prostokąt ma pole 63 $cm^2$.

Zadanie 7.

Oblicz pole powierzchni prostokąta o wymiarach 15 dm i 25 cm.

Zauważmy, że boki są wyrażone w różnych jednostkach. Przed wykonaniem obliczeń musimy je ujednolicić – zamieńmy dm na cm.

$15 dm = 15•10cm= 150 cm$

Prostokąt ma wymiary 150 cm i 25 cm. Policzmy jego pole:

$P =a•b=150cm•25cm= 3750cm^2 = 3750•0,01dm^2 = 37,5 dm^2$

Odp.: Pole tego prostokąta jest równe 37,5 $dm^2$.

Spis treści

Rozwiązane zadania
Mama dojeżdżała do pracy...

Obliczamy, ile minut mama dojeżdża teraz do pracy:

1 godz. 25 min - 1 godz. 8 min = 17 min

Odpowiedź: Mama dojeżdża teraz do pracy 17 minut. 

Za 4 paczki chusteczek do okularów...

Obliczamy, ile Ania zapłaciła za jedną paczkę chusteczek:

20 zł 40 gr : 4 = 5 zł 10 gr

Odp.: Jedna paczka chusteczek kosztuje 5 zł 10 gr. 

W ośmiu kołczanach było...
  • W jednym kołczanie było: 48 : 8 = 6 strzał.
  • Łucznicy wzięli:  .
  • Zostało:  .
Lekcje w szkole Piotra...

Obliczamy, ile czasu Piotr spędza we wtorki w szkole:

45 min + 10 min + 45 min + 10 min + 45 min + 10 min + 45 min = 210 min = 180 min + 30 min = 3 godz. 30 min

  • Obliczamy, o której Piotr wychodzi ze szkoły:

 

  • Najpierw obliczamy, ile godzin jest Piotr w szkole w poniedziałki:

 

razem: 5 godz. 20 min

Teraz możemy obliczyć, o ile dłużej chłopiec jest w szkole w poniedziałki niż we wtorki:

5 godz. 20 min - 3 godz. 30 min = 4 godz. 80 min - 3 godz. 30 min = 1 godz 50 min

Oblicz różnice liczb...

Obliczamy:

460 - 60 = 400

250 - 30 = 220

819 - 11 = 808

383 - 43 = 340

Przepisz działania do zeszytu...

Obliczamy sposobem Kuby:

450 - 130 = 450 - 100 - 30 = 350 - 30 = 320

747 - 320 = 747 - 300 - 20 = 347 - 20 = 327

869 - 417 = 869 - 400 - 17 = 469 - 17 = 452

635 - 213 = 635 - 200 - 13 = 435 - 12 = 423

Popatrz na obrazek i odczytaj...

puszka z orzeszkami: 220 g,

orzeszki: 180 g,

puszka: 220 g - 180 g = 40 g.

Odpowiedź: Sama puszka waży 40 g. 

Licz od miliona po sto tysięcy...

Zapisujemy:

1 000 000, 900 000, 800 000, 700 000, 600 000, 500 000, 400 000, 300 000, 200 000, 100 000

Oblicz sposobem Oli...

Obliczamy sposobem Oli:

 

 

Oblicz...

Obliczamy:

15 cm 20 mm : 5 = 3 cm 4 mm

21 cm 14 mm : 7 = 3 cm 2 mm

20 m 40 cm : 4 = 5 m 10 cm

36 m 18 cm : 6 = 9 m 2 cm