Przyroda

Wyobraź sobie, że wybierasz 4.55 gwiazdek na podstawie 20 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Przyroda

Wyobraź sobie, że wybierasz

3
 Zadanie

1
 Zadanie
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
patryk 99

0

2017-03-08
moglibyscie troche krocej
user profile image
Michał

784

2017-03-08
@patryk 99 Cześć, zawsze możesz zrobić krótsza własną notatkę, wzorując się na naszej odpowiedzi. Wtedy jest pewność że nikt nie będzie miał tak samo jak ty. Pozdrawiamy!
Informacje
Na tropach przyrody 6. Zeszyt ćwiczeń cz. 2
Autorzy: Marcin Braun, Wojciech Grajkowski, Marek Więckows
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Największy wspólny dzielnik (nwd)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6;
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.
  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12;
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.
Zobacz także
Udostępnij zadanie