Przyroda

Tajemnice przyrody 6. Zeszyt ćwiczeń cz. 2 (Zeszyt ćwiczeń, Nowa Era)

Na ilustracji przedstawiono zależności pokarmowe między 4.54 gwiazdek na podstawie 59 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Przyroda

Na ilustracji przedstawiono zależności pokarmowe między

4
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

 

spróchniałe drewno dębu---pędrak---ryjówka---puszczyk

liście dębu---gąsienica---sikora---kuna

owocniki borowików---zając---jastrząb

c

1. wiewiórka - dużo czasu spędza w zacisznych, osłoniętych od wiatru miejscach, żywi się zgromadzonymi w jesień zapasami

2. ryjówka-  w związku z trudnością zdobycia wystarczającej ilości owadów, radzi sobie zjadając duże ilości nasion i owoców, przed zimnem chowa się w norach wygrzebanych przez inne zwierzęta

3. zając- przed zimnem chroni go gęste futro, żywi się obgryzając gałązki drzew i krzewów

DYSKUSJA
user profile image
Gość

21-05-2017
dzięki
user profile image
Gość

11-05-2017
Kocham tą stronę😘
user profile image
Gość

19-04-2017
uwielbia te stronę i jeszcze raz bardzo wam dziękuję
user profile image
fifi.grudzien

19-04-2017
Dziękuję gdyby nie ta strona to miałabym dużo jedynek
user profile image
Gość

11-04-2017
dzięki bardzo!!!
user profile image
Gość

30-03-2017
dzienki
user profile image
Gość

19-03-2017
Dziękuję bardzo!
user profile image
Gość

14-03-2017
dzięki bardzo!!
user profile image
Gość

13-03-2017
Dziękuję gdyby nie ta strona to miałabym dużo jedynek😘
user profile image
Gość

09-03-2017
Dziękiii!
user profile image
Gość

09-03-2017
Hejka Kochane robaczki. Dzięki.
Informacje
Tajemnice przyrody 6. Zeszyt ćwiczeń cz. 2
Autorzy: Dominik Marszał, Maria Marko-Worłowska, Joanna Stawarz, Małgorzata Mańska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

10013

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $$3/{10}= 0,3$$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${64}/{100}= 0,64$$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${482}/{1000} = 0,482$$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${45}/{10}= 4,5$$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • $${2374}/{100}= 23,74$$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$$1/2= {1•5}/{2•5}=5/{10}= 0,5$$
$$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$$
$${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $$1/3$$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej n nazywamy liczbę naturalną m, jeżeli liczba n podzieli się przez m, tzn. gdy istnieje taka liczba naturalna k, że $$n=k•m$$.

Przykład:

10 dzieli się przez 1, 2, 5 i 10, z tego wynika, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo 10=10•1
  • 2 jest dzielnikiem 10 bo 10=5•2
  • 5 jest dzielnikiem 10 bo 10=2•5
  • 10 jest dzielnikiem 10 bo 10=1•10


Jeżeli liczba naturalna m jest dzielnikiem liczby n, to liczba n jest wielokrotnością liczby m.

Przykład:
Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.
Symboliczny zapis $$m∣n$$ oznacza, że m jest dzielnikiem liczby n (lub n jest wielokrotnością liczby m). Powyższy przykład możemy zapisać jako $$2|10$$ (czytaj: 2 jest dzielnikiem 10).


Dowolna liczba naturalna n, większa od 1 (n>1), która ma tylko dwa dzielniki: 1 oraz samą siebie (czyli liczbę n) nazywamy liczbą pierwszą. Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

  Zapamiętaj

Liczba 1 nie jest liczbą pierwszą – bo ma tylko jeden dzielnik. Liczba 0 też nie jest liczbą pierwszą – bo ma nieskończenie wiele dzielników.

  Zapamiętaj

Liczbę niebędącą liczbą pierwszą, czyli posiadająca więcej niż dwa dzielniki, nazywamy liczbą złożoną. Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...

  Zapamiętaj

Liczby 1 i 0 nie są liczbami złożonymi.

  Ciekawostka

Liczba doskonała to liczba, która jest równa sumie wszystkich swoich dzielników mniejszych od niej. Dotychczas znaleziono tylko 46 liczb doskonałych. Przykładem liczby doskonałej jest 6.

Zobacz także
Udostępnij zadanie