Przyroda

Wyjaśnij, w jaki sposób drzewa iglaste przystosowały się 4.12 gwiazdek na podstawie 17 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Przyroda

Wyjaśnij, w jaki sposób drzewa iglaste przystosowały się

4
 Zadanie

5
 Zadanie
6
 Zadanie

Liście w postaci igieł są pokryte żywiczną substancją, która chroni przed zimnem i utratą wody. Liście tego kształtu są również odporne na działanie wiatrów, nie ulegają rozrywaniu. Korony drzew w kształcie spadzistych lasów umożliwiają swobodne zsuwanie się po nich śniegi, dzięki czemu nie powoduje on uszkodzeń. 

DYSKUSJA
user profile image
Derpik1337

0

2017-03-16
Mam pytanie, czy będą rozwiązania do książek z siódmej i ósmej klasy?
user profile image
Monika

1929

2017-03-17
@Derpik1337 Cześć, na pewno rozwiązania do siódmej i ósmej klasy pojawią się na naszej stronie. Pozdrawiamy!
Informacje
Przyrodo, witaj! 6
Autorzy: Ewa Gromek, Ewa Kłos, Wawrzyniec Kofta, Ewa Laskowska
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

1929

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej n nazywamy liczbę naturalną m, jeżeli liczba n podzieli się przez m, tzn. gdy istnieje taka liczba naturalna k, że $$n=k•m$$.

Przykład:

10 dzieli się przez 1, 2, 5 i 10, z tego wynika, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo 10=10•1
  • 2 jest dzielnikiem 10 bo 10=5•2
  • 5 jest dzielnikiem 10 bo 10=2•5
  • 10 jest dzielnikiem 10 bo 10=1•10


Jeżeli liczba naturalna m jest dzielnikiem liczby n, to liczba n jest wielokrotnością liczby m.

Przykład:
Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.
Symboliczny zapis $$m∣n$$ oznacza, że m jest dzielnikiem liczby n (lub n jest wielokrotnością liczby m). Powyższy przykład możemy zapisać jako $$2|10$$ (czytaj: 2 jest dzielnikiem 10).


Dowolna liczba naturalna n, większa od 1 (n>1), która ma tylko dwa dzielniki: 1 oraz samą siebie (czyli liczbę n) nazywamy liczbą pierwszą. Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

  Zapamiętaj

Liczba 1 nie jest liczbą pierwszą – bo ma tylko jeden dzielnik. Liczba 0 też nie jest liczbą pierwszą – bo ma nieskończenie wiele dzielników.

  Zapamiętaj

Liczbę niebędącą liczbą pierwszą, czyli posiadająca więcej niż dwa dzielniki, nazywamy liczbą złożoną. Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...

  Zapamiętaj

Liczby 1 i 0 nie są liczbami złożonymi.

  Ciekawostka

Liczba doskonała to liczba, która jest równa sumie wszystkich swoich dzielników mniejszych od niej. Dotychczas znaleziono tylko 46 liczb doskonałych. Przykładem liczby doskonałej jest 6.

Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie