Przyroda

Przyrodo. witaj! 6 (Podręcznik, WSiP)

Scharakteryzuj piętra roślinne w Alpach. 4.53 gwiazdek na podstawie 17 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Przyroda

Scharakteryzuj piętra roślinne w Alpach.

1
 Zadanie

2
 Zadanie

3
 Zadanie
4
 Zadanie

Alpy składają się z pięciu piętr roślinnych. 

  • piętro pogórza ( do 800 m n.p.m.) zapełniają lasy mieszane,a w dolinach pola uprawne
  • piętro reglowe (do wysokości 1800 m n.p.m.) zajęte jest przez lasy iglaste
  • piętro subalpejskie (do wysokości 2100 m n.p.m.)- występują w nim zarośla krzewiastej sosny
  • piętro alpejskie (do wysokości 2800 m n.p.m.) pokryte jest w całości łąkami na których rosną rośliny zielne i krzewinki
  • piętro niwalne (powyżej 2800 m n.p.m.) jest pozbawione roślinności, występują na nim głównie mchy i porosty, obszar w dużej części pokryty lodowcami
DYSKUSJA
user profile image
poprostujamateusz

3 dni temu
thx
user profile image
Olga

19 grudnia 2017
dzieki!!!!
user profile image
Ola

22 listopada 2017
Dzięki
user profile image
Samuel

29 wrzesinia 2017
Dziękuję!!!!
user profile image
gosia

24 wrzesinia 2017
Dzięki za pomoc :)
Informacje
Przyrodo, witaj! 6
Autorzy: Gromek Ewa, Kłos Ewa, Kofta Wawrzyniec
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

7473

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zobacz także
Udostępnij zadanie