Przyroda

Tajemnice przyrody 6. Zeszyt ćwiczeń cz. 1 (Zeszyt ćwiczeń, Nowa Era)

Szymek postanowił sprawdzić pewną hipotezę. W tym celu włożył ręce do napełnionej 4.39 gwiazdek na podstawie 28 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Przyroda

Szymek postanowił sprawdzić pewną hipotezę. W tym celu włożył ręce do napełnionej

1
 Zadanie

2
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a)

Większa siła oporu działa na rękę po prawej stronie obrazka, ponieważ większa powierzchnia ciała jest wystawiona na działanie oporu wody.

b)

Na wartość siły oporu ma wpływ wielkość powierzchni wystawionej na działanie oporu wody. 

DYSKUSJA
Informacje
Tajemnice przyrody 6. Zeszyt ćwiczeń cz. 1
Autorzy: Dominik Marszał, Monika Mochnacz, Joanna Stawarz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

7340

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 1,57+7,6=?$$
    dodawanie-ulamkow-1 

    $$1,57+7,6=8,17 $$

Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Zobacz także
Udostępnij zadanie