a) (3xy−5x2y)−(10xy−2x2y)=3xy−5x2y−10xy+2x2y=−7xy−3x2y
b) (−12abc−4a2bc)−(abc+a2bc)+12=−12abc−4a2bc−abc−a2bc+12 =−13abc−5a2bc+12
c) (153x3+32y2−65)−(2,4x3+y2−161)= 1,6x3+32y2−65−2,4x3−y2+161= −0,8x3−31y2+31
d) (0,5x2y2−32ab−1)−(−31x2y2+121ab−41) =0,5x2y2−32ab−1+31x2y2−121ab+41 =65x2y2−0,75ab−0,75
e) (0,4ab−0,5bc+0,1cd)−(−0,3ab+2,5bc−cd)= 0,4ab−0,5bc+01cd+0,3ab−2,5bc+cd)= 0,7ab−3bc+1,1cd
f) (4xn+2xm+5)−(xn+xm+6)=4xn+2xm+5−xn−xm−6 =3xn+xm−1