Matematyka

Matematyka wokół nas 1 (Podręcznik, WSiP)

Oblicz jakim procentem a) liczby 72 jest liczba 9, 4,18,27,36,72,108, 144 4.53 gwiazdek na podstawie 36 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Oblicz jakim procentem a) liczby 72 jest liczba 9, 4,18,27,36,72,108, 144

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie
10
 Zadanie

`a) `

`9/72=1/8`

`1/8*100%=12 1/2% `  

 

`4/72=1/18`

`1/18*100%=5 5/9% `     

 

`18/72=1/4`

`1/4*100%=25%`

 

`27/72=3/8`

`3/8*100%=37 1/2%`

 

`72/72=1`

`1*100%=100%`

 

`108/72=3/2`

`3/2*100%=150%`

 

`144/72=2`

`2*100%=200%`

 

`b)`

`1m=100cm`

`1/100*100%=1%`

 

`15/100=3/20`

`3/20*100%=15%`

 

`90/100=9/10`

`9/10*100%=90%`

 

`25/100=1/4`

`1/4*100%=25%`

 

`50/100=1/2`

`1/2*100%=50%`

 

1m=1000mm

 

`1/1000*100%=0,1% `

 

`c)`

`1 km= 1000m`

`1/1000*100%=0,1%`

 

`350/1000=35/100`

`35/100*100%=35%`

 

`1000/1000=1`

`1*100%=100`

 

`840/1000=84/100`

`84/100*100%=84%`

 

`100/1000=10/100`

`10/100*100%=10%`

 

`1 km =100000cm`

`1/100000*100%=0,001%`

 

`50/100000=5/10000`

`5/10000*100%=0,05%`

DYSKUSJA
user profile image
Gość

8 listopada 2017
dzięki wielkie
user profile image
Halina

8 października 2017
dzięki :):)
user profile image
Wiktoria

27 września 2017
Dzięki za pomoc!
Informacje
Autorzy: Ewa Duvnjak, Ewa Kokiernak-Jurkiewicz, Maria Wójcicka
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Daniel

2514

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej  `n`  nazywamy taką liczbę naturalną  `m`, że  `n=k*m` `k`   jest liczbą naturalną. 


Przykład:

10 dzieli się przez 1, 2, 5 i 10. Wynika z tego, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo  `10=10*1`   
  • 2 jest dzielnikiem 10 bo  `10=5*2`  
  • 5 jest dzielnikiem 10 bo  `10=2*5`  
  • 10 jest dzielnikiem 10 bo  `10=1*10`  


Uwaga!!! 

Jeżeli liczba naturalna `m`  jest dzielnikiem liczby `n` , to liczba `n`  jest wielokrotnością liczby `m` .

Przykład:

Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.


Dowolną liczbę naturalną n większą od 1 (n>1), która ma tylko dwa dzielniki, 1 oraz samą siebie, nazywamy liczbą pierwszą.

Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

Liczbę naturalną n (n>1) niebędącą liczbą pierwszą, czyli posiadającą więcej niż dwa dzielniki, nazywamy liczbą złożoną.

Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...


Zapamiętaj!!!

Liczby 0 i 1 nie są ani liczbami pierwszymi ani złożonymi. 

 
Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $$3/{10}= 0,3$$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${64}/{100}= 0,64$$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${482}/{1000} = 0,482$$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${45}/{10}= 4,5$$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • $${2374}/{100}= 23,74$$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$$1/2= {1•5}/{2•5}=5/{10}= 0,5$$
$$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$$
$${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $$1/3$$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Zobacz także
Udostępnij zadanie