Matematyka

Matematyka z plusem 6. Geometria (Zeszyt ćwiczeń, GWO)

a) Pole trójkąta równoramiennego KLM jest równe 3 cm² 4.55 gwiazdek na podstawie 20 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

a) Pole trójkąta równoramiennego KLM jest równe 3 cm²

3
 Zadanie

4
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Gość

16 stycznia 2017
Dzięki
user avatar
Gość

14 stycznia 2017
wielkie dzięki
user avatar
Gość

10 stycznia 2017
HEJ ODRABIMY. PL CZY MOGLBYS MI TO WYTŁUMACZYĆ PRZYKŁAD B CO TO SA ZA OBLICZENIA BO NIE KUMAM PROSZE O SZYBKĄ ODPOWIEDŹ
user avatar
Piotrek

6016

11 stycznia 2017
@Gość Cześć, wiemy że pole wynosi 6 cm², podstawa trójkąta wynosi 5 cm. Wzór na pole trójkąta to P=1/2*a*h. Postawiamy wszystkie znane wielkości i obliczamy wysokość trójkąta. Wiemy że wysokość jest prostopadła do podstawy oraz je...
user avatar
kajetan333

4 stycznia 2017
widze rozwiązanie zadania ale nie wiem skąd to sie bierze
user avatar
Piotrek

6016

5 stycznia 2017
@kajetan333 Cześć, a czego konkretnie nie rozumiesz? Postaramy się wyjaśnić:)
Informacje
Autorzy: M.Dobrowolska, M.Jucewicz, P.Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom