Matematyka

Podstawami narysysowanych ostrosłupów są wielokąty foremne. 4.6 gwiazdek na podstawie 10 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Podstawami narysysowanych ostrosłupów są wielokąty foremne.

28
 Zadanie

29
 Zadanie
30
 Zadanie
31
 Zadanie
32
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) W podstawie ostrosłupa mamy kwadrat o boku długości 3. Zatem suma krawędzi podstawy ostrosłupa wynosi

Jedna z krawędzi bocznych ostrosłupa ma długość 4. Dwie inne krawędzie boczne mają długość równą przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 3 i 4. Zatem z tw. Pitagorasa mamy

Ostatnia, czwarta krawędź boczna jest przeciprostokątną trójkąta prostokątnego o jednej przyprostokątnej długości 4 i drugiej przyprostokątnej, która jest przekątną kwadratu o boku długości 3 , zatem ma mierę Liczymy długość krawędzi bocznej ostrosłupa korzystając z tw. Pitagorasa

Suma krawędzi bocznych ostrosłupa wynosi .

Suma wszystkich krawędzi ostrosłupa to suma krawędzi podstawy oraz krawędzi bocznych

b) W podstawie ostrosłupa mamy kwadrat o boku długości . Policzymy długość   korzystając z tw. Pitagorasa, ponieważ jedna ze ścian bocznych ostrosłupa jest trójkątem prostokątnym o przeciwprostokątnej 10 i przyprostokątnych 6 i .

Zatem suma krawędzi podstawy ostrosłupa wynosi

Jedna z krawędzi bocznych ostrosłupa ma długość 6. Druga krawędź boczna na długość 10.

Trzecia krawędź boczna ma długość równą przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 6 i 8. Zatem z tw. Pitagorasa mamy

Ostatnia, czwarta krawędź boczna jest przeciprostokątną trójkąta prostokątnego o jednej przyprostokątnej długości 6 i drugiej przyprostokątnej, która jest przekątną kwadratu o boku długości 8 , zatem ma mierę Liczymy długość krawędzi bocznej ostrosłupa korzystając z tw. Pitagorasa

Suma krawędzi bocznych ostrosłupa wynosi .

Suma wszystkich krawędzi ostrosłupa to suma krawędzi podstawy oraz krawędzi bocznych

c) W podstawie ostrosłupa mamy sześciokąt foremny o boku długości . Policzymy długość   korzystając z tw. Pitagorasa, ponieważ jedna z krawędzi bocznych ostrosłupa ma długość 5 ,a  druga krawędź boczna ma długosć 13. Wyznaczają one trójkąt  prostokątny o przeciwprostokątnej 13 i przyprostokątnych 5 i    (dłuższa przekątna sześciokąta foremnego o boku długości ). Zatem z tw. Pitagorasa mamy

Suma krawędzi podstawy ostrosłupa wynosi

Dwie krawędzie boczne ostrosłupa mają długość 5 i 13.

Dwie inne krawędzie boczne mają długość równą przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 5 i a=6. Zatem z tw. Pitagorasa mamy

Dwie pozostałe  krawędzie boczne ostrosłupa są przeciprostokątnymi trójkąta prostokątnego o jednej przyprostokątnej długości 5 i drugiej przyprostokątnej, która jest krótszą przekątną sześciokąta foremnego o boku długości 6 , zatem ma mierę Liczymy długość krawędzi bocznej ostrosłupa korzystając z tw. Pitagorasa

Suma krawędzi bocznych ostrosłupa wynosi .

Suma wszystkich krawędzi ostrosłupa to suma krawędzi podstawy oraz krawędzi bocznych

DYSKUSJA
komentarz do rozwiązania Podstawami narysysowanych ostrosłupów są wielokąty foremne.  - Zadanie 28: Matematyka z plusem 2 - strona 90
Wiktor

18 września 2018
dzieki :):)
klasa:
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Cechy podzielności liczb

Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb.

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.


Cechy podzielności:

  1. Podzielność liczby przez 2

    Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.

    Przykład:

    • 1 896 319 128 → liczba jest podzielna przez 2, ponieważ jej ostatnią cyfrą jest 8.
       
  2. Podzielność liczby przez 3

    Liczba jest podzielna przez 3, gdy suma jej cyfr jest liczbą podzielną przez 3.

    Przykład:

    • 7 981 272 → liczba jest podzielna przez 3, ponieważ suma jej cyfr (7+9+8+1+2+7+2=36) jest liczbą podzielną przez 3.
       
  3. Podzielność liczby przez 4

    Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

    Przykład:

    • 2 147 816 → liczba jest podzielna przez 4, ponieważ jej dwie ostatnie cyfry tworzą liczbę 16, a liczba 16 jest podzielna przez 4.
       
  4. Podzielność liczby przez 5

    Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.

    Przykład:

    • 18 298 415 → liczba jest podzielna przez 5, ponieważ jej ostatnią cyfrą jest 5.
       
  5. Podzielność liczby przez 6

    Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.

    Przykład:

    • 1248 → liczba jest podzielna przez 6, ponieważ dzieli się przez 2 (jej ostatnią cyfrą jest 8), a także dzieli się przez 3 (suma jej cyfr 1+2+4+8=15 jest liczbą podzielną przez 3).
       
  6. Podzielność liczby przez 9

    Liczba jest podzielna przez 9, gdy suma jej cyfr jest liczbą podzielną przez 9.

    Przykład:

    • 1 890 351 -> liczba jest podzielna przez 9, ponieważ suma jej cyfr (1+8+9+0+3+5+1=27) jest jest liczbą podzielną przez 9.
       
  7. Podzielność liczby przez 10

    Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.

    Przykład:

    • 192 290 → liczba jest podzielna przez 10, ponieważ jej ostatnią cyfrą jest 0.
       
  8. Podzielność liczby przez 25

    Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.

    Przykład:

    • 4675 → liczba jest podzielna przez 25, ponieważ jej dwie ostatnie cyfry tworzą liczbę 75, a 75 jest podzielne przez 25.
       
  9. Podzielność liczby przez 100

    Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.

    Przykład:

    • 12 848 100 → liczba jest podzielna przez 100, ponieważ jej dwie ostatnie cyfry to zera.
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom