Matematyka

Matematyka z plusem 6. Liczby i wyrażenia algebraiczne część II (Zeszyt ćwiczeń, GWO)

Karol miał trzy razy więcej gier komputerowych niż Ewa. Pewnego dnia Karol dał Ewie dwie gry. 4.52 gwiazdek na podstawie 31 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Karol miał trzy razy więcej gier komputerowych niż Ewa. Pewnego dnia Karol dał Ewie dwie gry.

10
 Zadanie
11
 Zadanie
12
 Zadanie

13
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Gość

27 marca 2017
Bardzo dziękuję jesteście naprawdę pomocni 💟
user avatar
Adam Rassem

8 marca 2017
Dziękuję
user avatar
Konrad Dąbrowski

2 marca 2017
Dziękuje
Informacje
Autorzy: Dobrowolska Małgorzata, Agnieszka Demby
Wydawnictwo: GWO
Rok wydania:
ISBN: 978-83-7420-243-5
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Odejmowanie pisemne
  1. Zapisujemy odjemną, a pod nią odjemnik, wyrównując ich cyfry do prawej strony.

    odejmowanie1
     
  2. Odejmowanie prowadzimy od strony prawej do lewej. Najpierw odejmujemy jedności, w naszym przykładzie mamy 3 - 9. Jeśli jedności odjemnej są mniejsze od jedności odjemnika (a tak jest w naszym przykładzie), wtedy z dziesiątek przenosimy jedną (lub więcej) „dziesiątkę” do jedności i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie wygląda to następująco: od 3 nie możemy odjąć 9, więc przenosimy (pożyczamy) jedną dziesiątkę z siedmiu dziesiątek i otrzymujemy 13 – 9 = 4, czyli pod cyframi jedności zapisujemy 4, a nad cyframi dziesiątek zapisujemy ilość dziesiątek które nam zostały czyli 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostało nam sześć dziesiątek).

    odejmowanie2
     
  3. Odejmujemy dziesiątki, a następnie zapisujemy wynik pod cyframi dziesiątek. Gdy dziesiątki odjemnej są mniejsze od dziesiątek odjemnika, z setek przenosimy jedną (lub więcej) „setkę” do dziesiątek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 6 – 6 = 0, czyli pod cyframi dziesiątek zapisujemy 0.

    odejmowanie2
     
  4. Odejmujemy setki, a następnie wynik zapisujemy pod cyframi setek. Gdy setki odjemnej są mniejsze od setek odjemnika, z tysięcy przenosimy jeden (lub więcej) „tysiąc” do setek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 2 – 1 = 1, czyli pod cyframi setek zapisujemy 1.

    odejmowanie3
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik odejmowania pisemnego. W naszym przykładzie różnicą liczb 273 i 169 jest liczba 104.


Dla utrwalenia przeanalizujmy jeszcze jeden przykład odejmowania pisemnego.

Wykonamy pisemnie odejmowanie: 4071 - 956.

  1. Zapisujemy odjemną, a pod nią odjemnik.

    odejmowanie11
     
  2. Odejmujemy jedności: od 1 nie możemy odjąć 6, więc pożyczamy jedną dziesiątkę z siedmiu i otrzymujemy 11 – 6 = 5, czyli pod cyframi jedności zapisujemy 5, natomiast nad cyframi dziesiątek wpisujemy 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostaje sześć dziesiątek).

    odejmowanie12
     
  3. Odejmujemy dziesiątki: 6 – 5 = 1, czyli pod cyframi dziesiątek wpisujemy 1.

    odejmowanie13
     
  4. Odejmujemy setki: od 0 nie możemy odjąć 9, więc pożyczamy jeden tysiąc i rozmieniamy go na 10 setek (bo jeden tysiąc to dziesięć setek) i otrzymujemy 10 – 9 = 1, czyli pod cyframi setek wpisujemy 1, a nad cyframi tysięcy wpisujemy 3, bo tyle tysięcy zostało.

    odejmowanie14
     
  5. Odejmujemy tysiące: w naszym przykładzie mamy 3 – 0 = 3 i wynik zapisujemy pod cyframi tysięcy.

    odejmowanie15
     
  6. Wynik naszego odejmowania: 4071 – 956 = 3115.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom