Matematyka

Matematyka z plusem 6. Liczby i wyrażenia algebraiczne część II (Zeszyt ćwiczeń, GWO)

Antek wydal na lody 25% swojego kie­szonkowego,czyli 12 zł. Jakie 4.57 gwiazdek na podstawie 28 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Antek wydal na lody 25% swojego kie­szonkowego,czyli 12 zł. Jakie

18
 Zadanie
19
 Zadanie
20
 Zadanie

21
 Zadanie

22
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Oliwier Maciak

8

2 marca 2017
Co mam przepisać nad "Liczba 12 to 25% liczby..."?
user profile image
Agnieszka

383

3 marca 2017
@Oliwier Maciak Cześć, obydwa obliczenia należy przepisać. Pozdrawiamy!
Informacje
Autorzy: Dobrowolska Małgorzata, Agnieszka Demby
Wydawnictwo: GWO
Rok wydania:
ISBN: 978-83-7420-243-5
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2 $$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm$$; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$
Zobacz także
Udostępnij zadanie