Matematyka

Matematyka wokół nas 3 (Zbiór zadań, WSiP)

Oblicz objętość i pole powierzchni całkowitej graniastosłupa prawidłowego trójkątnego 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Oblicz objętość i pole powierzchni całkowitej graniastosłupa prawidłowego trójkątnego

11
 Zadanie
12
 Zadanie
13
 Zadanie
14
 Zadanie
15
 Zadanie
16
 Zadanie
17
 Zadanie
18
 Zadanie
19
 Zadanie

20
 Zadanie

21
 Zadanie
22
 Zadanie

Pole powierzchni wynosi:

`P=2*(6^2sqrt3)/4+3*6*6=(18sqrt3+108)\ "cm"^2`

Objętość jest równa:

`V=(6^2sqrt3)/4*6=3/2*36sqrt3=54sqrt3\ "cm"^3`

DYSKUSJA
user profile image
Asia

27 marca 2018
Dzięki za pomoc!
user profile image
Lilianna

11 grudnia 2017
Dzięki za pomoc :)
user profile image
Jan

14 listopada 2017
Dzieki za pomoc :)
user profile image
Olga

6 listopada 2017
dzieki!!!!
user profile image
Nikodem

22 września 2017
dzięki!
Informacje
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302135347
Autor rozwiązania
user profile image

Marek

1068

Korepetytor

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Zobacz także
Udostępnij zadanie