Matematyka

Matematyka wokół nas 3 (Zbiór zadań, WSiP)

Uporządkuj liczby malejąco. 1^(-700), 7^(-100) 4.0 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Uporządkuj liczby malejąco. 1^(-700), 7^(-100)

3
 Zadanie
4
 Zadanie

5
 Zadanie

6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie

`1^(-700)=(1^(-7))^100=1^100`

`7^(-100)=(7^(-1))^100=(1/7)^100`

`2^(-600)=(2^(-6))^100=(1/64)^100`

`6^(-200)=(6^(-2))^100=(1/36)^100`

`3^(-500)=(3^-5)^100=(1/243)^100`

`5^(-300)=(5^(-3))^100=(1/125)^100`

`4^(-400)=(4^-4)^100=(1/256)^100`

 

`"Kolejność malejąca:"`

`1^(-700), 7^(-100),6^(-200),2^(-600),5^(-300),3^(-500),4^(-400)`

DYSKUSJA
Informacje
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302135347
Autor rozwiązania
user profile image

Marek

1093

Korepetytor

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” z liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: $$9/4 = 2 1/4$$

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą).

Przeliczanie jednostek – centymetry na metry i kilometry

W praktyce ważna jest umiejętność przeliczania 1 cm na planie lub mapie na ilość metrów lub kilometrów w terenie.

  • 1 m = 100 cm
  • 1 cm = 0,01 m
  • 1 km = 1000 m = 100000 cm
  • 1 m = 0,001 km
  • 1 cm = 0,00001 km

Przykłady na przeliczanie skali mapy:

  • skala 1:2000 mówi nam, że 1 cm na mapie to 2000 cm w rzeczywistości, czyli 20 m policzmy: 2000 cm = 2000•0,01= 20 m
  • skala 1:30000 mówi nam, że 1 cm na mapie to 30000 cm w rzeczywistości, czyli 300 m policzmy: 30000 cm = 30000•0,01= 300 m
  • skala 1:500000 mówi nam, że 1 cm na mapie to 500000 cm w rzeczywistości, czyli 5 km policzmy: 500000 cm = 500000•0,00001= 5 km
  • skala 1:1000000 mówi nam, że 1 cm na mapie to 1000000 cm w rzeczywistości, czyli 10 km policzmy: 1000000 cm = 1000000•0,00001= 10 km
Zobacz także
Udostępnij zadanie