Matematyka

Matematyka wokół nas 3 (Zbiór zadań, WSiP)

Oblicz miary kątów α β γ zaznaczonych na rysunkach. 4.55 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Oblicz miary kątów α β γ zaznaczonych na rysunkach.

1
 Zadanie

2
 Zadanie

`"a)"`

`beta=180-50=130^o`

`alpha=180-/_"BCA"-/_"CBA"=180-(180-110)-(180-130)=180-70-50=60^o`

 

`"b)"`

`beta=180-(180-90-40)=180-130=50^o`

`gamma=180-2*40=180-80=100^o`

`alpha=180-90-40=50^o`

 

`"c)"`

`gamma=180-120=60^o`

`alpha=90-gamma=90-60=30^o`

`beta=180-alpha=180-30=150^o`

 

`"d)"`

`alpha=180-140=40^o`

`beta=180-90-alpha=180-90-40=50^o`

`gamma=180-2*beta=180-100=80^o` 

DYSKUSJA
user profile image
Natalia

8 marca 2018
Dzięki :):)
user profile image
Gość

21 grudnia 2017
Dziękuje
user profile image
Gość

10 grudnia 2017
ok dizęki
user profile image
Ada

8 grudnia 2017
dzieki :)
user profile image
Maria

25 listopada 2017
Dzieki za pomoc :):)
user profile image
Eryk

12 października 2017
Dzieki za pomoc!
Informacje
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302135347
Autor rozwiązania
user profile image

Marek

1091

Korepetytor

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 1,57+7,6=?$$
    dodawanie-ulamkow-1 

    $$1,57+7,6=8,17 $$

Porównywanie ułamków dziesiętnych

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:
  • Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej;

  • Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej;

  • Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Zapamiętaj

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Przykłady:
$$0,34=0,340=0,3400=0,34000=...$$
$$0,5600=0,560=0,56$$

W związku z powyższą uwagą, jeżeli w czasie porównywania ułamków w którymś zabraknie cyfr po przecinku, to należy dopisać odpowiednią liczbę zer.
 

Przykład: Porównajmy ułamki 5,25 i 5,23.
Przed porównywaniem ułamków wygodnie jest zapisać porównywane liczby jedna pod drugą, ale tak by zgadzały się rzędy, czyli przecinek pod przecinkiem.

porownanie1
Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 5>3, zatem ułamek 5,25 jest większy od 5,23. Zatem 5,25>5,23.

Przykład: Porównajmy ułamki 0,8 i 0,81.
Zapisujemy ułamki jeden pod drugim, tak aby zgadzały się rzędy, czyli przecinek pod przecinkiem. Ponadto dopisujemy 0 w ułamku 0,8.

porownanie2

Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 0<1, zatem ułamek 0,81 jest większy od 0,8. Zatem 0,81>0,8.

Zobacz także
Udostępnij zadanie