Ustal, ile liczb naturalnych spełnia nierówność - Zadanie 58: Matematyka z plusem 1. Zbiór zadań - strona 80
Matematyka
Wybierz książkę
Ustal, ile liczb naturalnych spełnia nierówność 4.53 gwiazdek na podstawie 15 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Ustal, ile liczb naturalnych spełnia nierówność

57
 Zadanie

58
 Zadanie

59
 Zadanie
60
 Zadanie
61
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a)

Nierównośc spełniają 3 liczby naturalne .

b)

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Select...
Informacje
Autorzy: M Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201704
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Wyłączanie całości z ułamka niewłaściwego

Wyłączanie całości z ułamka niewłaściwego - krok po kroku

Dzielimy (być może z resztą) licznik przez mianownik (inaczej mówiąc sprawdzamy ile razy mianownik „zmieści się” w liczniku).

Otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. część całkowita) oraz resztę, która jest ułamkiem właściwym (tzw. część ułamkowa).


W tym przypadku wykonujemy dokładnie odwrotne działania niż przy zamianie liczby mieszanej na ułamek niewłaściwy. 


Zamiana ułamka niewłaściwego `9/4`  na liczbę mieszaną:

  1. Najpierw dzielimy licznik przez mianownik, czyli `9:4=2 \ \ "r" \ 1 \ \ \ "bo" \ \ \ 2*4+1=8+1=9` 

  2. Otrzymujemy 2 całości. Pozostaje nam jeszcze 1 część. 



Mamy więc: 

`16/3=5 1/3` 

 

Przykłady:

  • `21/4=5 1/4` 

  • `35/6=5 5/6` 


Zamiana ułamka niewłaściwego na liczbę mieszaną lub liczbę naturalną nazywana jest wyłączaniem całości z ułamka

Rozkład liczby na czynniki pierwsze

Każda liczba naturalna większa od 1 jest albo liczbą pierwszą albo daje się przedstawić w postaci iloczynu liczb pierwszych, przy czym takie przedstawienie jest tylko jedno, jeśli nie uwzględniać kolejności czynników.

Rozkład liczby na czynniki pierwsze to przedstawienie liczby w postaci iloczynu liczb pierwszych.

Sposób rozkładania liczby naturalnej na czynniki pierwsze:

  1. Zapisujemy liczbę, którą chcemy rozłożyć na czynniki pierwsze, a obok niej kreskę pionową.

    rozklad-1
  2. Dzielimy daną liczbę przez najmniejszy dzielnik będący liczbą pierwszą. Dzielnik ten zapisujemy po prawej stronie kreski, a wynik dzielenia zapisujemy pod daną liczbą.

    rozklad-2

    W naszym przykładzie dzielnikiem liczby 198 będącym liczbą pierwszą jest liczba 2, zatem 2 zapisujemy po prawej stronie kreski, a wynik dzielenia 198÷2 = 99 zapisujemy pod liczbą 198.

  3. Czynność z punktu 2 powtarzamy tak długo, aż wynikiem ostatniego dzielenia będzie liczba 1.

    rozklad-3

    W naszym przykładzie szukamy dzielnika liczy 99 będącego liczbą pierwszą, dzielnikiem takim jest 3, którą zapisujemy po prawej stronie kreski (pod 2), a wynik dzielenia 99÷3 = 33, zapisujemy po lewej stronie kreski (pod 99).
    Następnie szukamy dzielnika liczby 33 będącego liczbą pierwszą, dzielnikiem takim jest 3, którą zapisujemy po prawej stronie kreski (pod 3), a wynik dzielenia 33÷3 = 11 zapisujemy po lewej stronie kreski (pod 33).

    Kolejny etap to szukanie dzielnika liczby 11 będącego liczbą pierwszą, dzielnikiem takim jest 11 i zapisujemy ją po prawej stronie kreski (pod 3), a wynik dzielenia 11÷11 = 1 zapisujemy po lewej stronie kreski (pod 11). Wynikiem dzielenia jest 1, zatem rozłożyliśmy daną liczbę 198 na czynniki pierwsze.

  4. Rozkład liczby na czynniki pierwsze to iloczyn liczb zapisanych po prawej stronie kreski.
    Rozkład liczby 198 na czynniki pierwsze jest następujący: $198=2•3•3•11$.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom