Czytanie diagramów - Zadanie 10: Matematyka z plusem 3. Zbiór zadań 2001 - strona 87
Matematyka
Wybierz książkę
Czytanie diagramów 4.5 gwiazdek na podstawie 10 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Czytanie diagramów

10
 Zadanie

11
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) Zasoby ropy naftowej Afryki i Azji to 10%+65%=75% czyli

b) W obu Amerykach jest 17% zasobów zaś w Europue 8% czyli czyli to prawda

c) W Afryce i Azji jest 10% zasobów czyli

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy III gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
III gimnazjum
Informacje
Autorzy: Braun Marcin, Lech Jacek
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201728
Autor rozwiązania
user profile

Jacek

2861

Nauczyciel

Wiedza
Miejsce zerowe funkcji

Miejsce zerowe funkcji to argument, dla którego funkcja przyjmuje wartość 0, czyli miejsce w którym funkcja przecina oś x. Oblicza się go podstawiając pod y wartość 0 we wzorze funkcji.

Przykład:

Obliczyć miejsce zerowe dla funkcji y=2x-3.

$y=2x-3 $
$0=2x-3 $
$3=2x $
$x=1,5 $

Odp.: Miejscem zerowym funkcji jest x=1,5.

 
Rodzaje liczb

Liczby dzielą się na:

  1. Liczby naturalne
  2. Liczby całkowite
  3. Liczby wymierne
  4. Liczby niewymierne

1. Liczby naturalne są najbardziej podstawowe, służą do określania, ile elementów jest w jakimś zbiorze, np. 3 jabłka w koszyku, 5 jabłek w koszyku itd. Zero też jest liczbą naturalną (powszechnie uznawane na poziomie gimnazjum)!
Przykłady: 0,1,2,3,4,5,6,7....

2. Liczby całkowite to wszystkie liczby naturalne oraz wszystkie liczby przeciwne do jakiejś liczby naturalnej (np. liczbą przeciwną do 5 jest -5, przeciwną do 18 jest -18, a przeciwną do 0 jest 0). Zatem liczby całkowite to wszystkie takie, które występują w postaci jednej „pełnej” liczby (jak liczby naturalne), ale mogą być zarówno dodatnie jak i ujemne.
Przykłady: -3,-2,-1,0,1,2,3....

3. Liczby wymierne to wszystkie takie, które da się przedstawić za pomocą ułamka zwykłego (licznik i mianownik są całkowite). Liczby naturalne i całkowite to liczby wymierne!

Przykłady: : $ 23/45 $, $36/1$, 4, -5, 88....

4. Liczb niewymiernych nie da się przedstawić za pomocą ułamka zwykłego, a zapis w postaci ułamka dziesiętnego miałby nieskończenie wiele cyfr po przecinku, których kolejność wciąż by się zmieniała (nie dałoby się wyodrębnić okresu, patrz niżej). Przykłady: π=3,14…
 

Kilka zależności:
  1. wszystkie liczby naturalne są całkowitymi
  2. wszystkie liczby naturalne i całkowite są liczbami wymiernymi
  3. wszystkie liczby całkowite dodatnie to liczby naturalne
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom