Matematyka

Uzasadnij, że dla dowolnej liczby naturalnej n: 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Uzasadnij, że dla dowolnej liczby naturalnej n:

15
 Zadanie

16
 Zadanie
.1
 Zadanie
.2
 Zadanie
.3
 Zadanie
1
 Zadanie

 

W zadaniu podane mamy, że:

 

Liczba jest nieparzysta jeżeli można ją zapisać w postaci:

  

gdzie x jest liczbą nieparzystą, m jest dowolną liczbą naturalną. W naszym przypadku mamy, że:

 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Marcin Braun, Jacek Lech, Marek Pisarski
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209670
Autor rozwiązania
user profile

Ola

25958

Nauczyciel

Wiedza
Cechy podzielności liczb

Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb.

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.


Cechy podzielności:

  1. Podzielność liczby przez 2

    Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.

    Przykład:

    • 1 896 319 128 → liczba jest podzielna przez 2, ponieważ jej ostatnią cyfrą jest 8.
       
  2. Podzielność liczby przez 3

    Liczba jest podzielna przez 3, gdy suma jej cyfr jest liczbą podzielną przez 3.

    Przykład:

    • 7 981 272 → liczba jest podzielna przez 3, ponieważ suma jej cyfr (7+9+8+1+2+7+2=36) jest liczbą podzielną przez 3.
       
  3. Podzielność liczby przez 4

    Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

    Przykład:

    • 2 147 816 → liczba jest podzielna przez 4, ponieważ jej dwie ostatnie cyfry tworzą liczbę 16, a liczba 16 jest podzielna przez 4.
       
  4. Podzielność liczby przez 5

    Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.

    Przykład:

    • 18 298 415 → liczba jest podzielna przez 5, ponieważ jej ostatnią cyfrą jest 5.
       
  5. Podzielność liczby przez 6

    Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.

    Przykład:

    • 1248 → liczba jest podzielna przez 6, ponieważ dzieli się przez 2 (jej ostatnią cyfrą jest 8), a także dzieli się przez 3 (suma jej cyfr 1+2+4+8=15 jest liczbą podzielną przez 3).
       
  6. Podzielność liczby przez 9

    Liczba jest podzielna przez 9, gdy suma jej cyfr jest liczbą podzielną przez 9.

    Przykład:

    • 1 890 351 -> liczba jest podzielna przez 9, ponieważ suma jej cyfr (1+8+9+0+3+5+1=27) jest jest liczbą podzielną przez 9.
       
  7. Podzielność liczby przez 10

    Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.

    Przykład:

    • 192 290 → liczba jest podzielna przez 10, ponieważ jej ostatnią cyfrą jest 0.
       
  8. Podzielność liczby przez 25

    Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.

    Przykład:

    • 4675 → liczba jest podzielna przez 25, ponieważ jej dwie ostatnie cyfry tworzą liczbę 75, a 75 jest podzielne przez 25.
       
  9. Podzielność liczby przez 100

    Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.

    Przykład:

    • 12 848 100 → liczba jest podzielna przez 100, ponieważ jej dwie ostatnie cyfry to zera.
Rozkład liczby na czynniki pierwsze

Każda liczba naturalna większa od 1 jest albo liczbą pierwszą albo daje się przedstawić w postaci iloczynu liczb pierwszych, przy czym takie przedstawienie jest tylko jedno, jeśli nie uwzględniać kolejności czynników.

Rozkład liczby na czynniki pierwsze to przedstawienie liczby w postaci iloczynu liczb pierwszych.

Sposób rozkładania liczby naturalnej na czynniki pierwsze:

  1. Zapisujemy liczbę, którą chcemy rozłożyć na czynniki pierwsze, a obok niej kreskę pionową.

    rozklad-1
  2. Dzielimy daną liczbę przez najmniejszy dzielnik będący liczbą pierwszą. Dzielnik ten zapisujemy po prawej stronie kreski, a wynik dzielenia zapisujemy pod daną liczbą.

    rozklad-2

    W naszym przykładzie dzielnikiem liczby 198 będącym liczbą pierwszą jest liczba 2, zatem 2 zapisujemy po prawej stronie kreski, a wynik dzielenia 198÷2 = 99 zapisujemy pod liczbą 198.

  3. Czynność z punktu 2 powtarzamy tak długo, aż wynikiem ostatniego dzielenia będzie liczba 1.

    rozklad-3

    W naszym przykładzie szukamy dzielnika liczy 99 będącego liczbą pierwszą, dzielnikiem takim jest 3, którą zapisujemy po prawej stronie kreski (pod 2), a wynik dzielenia 99÷3 = 33, zapisujemy po lewej stronie kreski (pod 99).
    Następnie szukamy dzielnika liczby 33 będącego liczbą pierwszą, dzielnikiem takim jest 3, którą zapisujemy po prawej stronie kreski (pod 3), a wynik dzielenia 33÷3 = 11 zapisujemy po lewej stronie kreski (pod 33).

    Kolejny etap to szukanie dzielnika liczby 11 będącego liczbą pierwszą, dzielnikiem takim jest 11 i zapisujemy ją po prawej stronie kreski (pod 3), a wynik dzielenia 11÷11 = 1 zapisujemy po lewej stronie kreski (pod 11). Wynikiem dzielenia jest 1, zatem rozłożyliśmy daną liczbę 198 na czynniki pierwsze.

  4. Rozkład liczby na czynniki pierwsze to iloczyn liczb zapisanych po prawej stronie kreski.
    Rozkład liczby 198 na czynniki pierwsze jest następujący: $$198=2•3•3•11$$.

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom