Matematyka

Oblicz w zeszycie, ile zer... 5.0 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Matematyka
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Bożena Kiljańska, Adam Konstantynowicz
Wydawnictwo: Operon
Rok wydania:
ISBN: 9788378795285
Autor rozwiązania
user profile

Magda

5009

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Potęgowanie iloczynu i ilorazu

Potęgowanie iloczynu i ilorazu odbywa się według dwóch prostych zasad: 

  1. Potęga iloczynu jest równa iloczynowi potęg. 

    `(a*b)^n=a^n*b^n`  

  2. Potęga ilorazu jest równa ilorazowi potęg. 
  • `(a:b)^n=a^n:b^n \ \ \ \ "dla" \ \ \ b!=0`    

  • `(a/b)^n=a^n/b^n \ \ \ \ "dla" \ \ \ b!=0`  
     

Przykłady:

  • `(3*2)^2=3^2*2^2`
     
  • `(5*7)^4=5^4*7^4`   

  • `(9:4)^3=9^3:4^3`  

  • `(8/5)^6=8^6/5^6`  
Potęgowanie liczb całkowitych

Iloczyn jednakowych czynników można przedstawić w postaci potęgi.

potegowanie1

Symbol $$a^n$$ oznacza n-krotne mnożenie liczby a przez siebie; czyta się go a podniesione do n-tej potęgi, a do n-tej potęgi, a do potęgi n-tej.

potegowanie2
 

Przykłady:

  • $$3•3= 3^2$$ ← czytamy: 3 do potęgi drugiej lub druga potęga liczby 3,
  • $$5•5•5= 5^3$$ ← czytamy: 5 do potęgi trzeciej lub trzecia potęga liczby 5,
  • $$(-1)•(-1)•(-1)•(-1)= (-1)^4$$ ← czytamy: -1 do potęgi czwartej lub czwarta potęga liczby -1.


Dowolna liczba podniesiona do potęgi pierwszej to ta sama liczba → $$a^1 = a$$,

Zerowa potęga dowolnej liczby jest zawsze liczbą 1 → $$a^0 = 1$$.

  Uwaga

Zero podniesione do zerowej potęgi jest nieokreślone (jest niewykonalne).

Przykłady:

  • $$5^0 = 1$$
  • $$(-8)^0 = 1$$
  • $$0^2 = 0$$
  • $$(-12)^1 = -12$$

Drugą potęgę liczby a nazywamy także kwadratem liczby a i zapisujemy $$a^2$$

Trzecią potęgę liczby a nazywamy także sześcianem liczby a i zapisujemy $$a^3$$
 

  • Dowolna liczba (dodatnia lub ujemna) podniesiona do parzystej potęgi będzie zawsze liczbą dodatnią.

    Przykłady:

    • $$(−3)^4 = 81$$
    • $$2^2 = 4$$
  • Liczba ujemna podniesiona do potęgi nieparzystej będzie zawsze liczba ujemną.

    Przykład:

    • $$(−2)^3 = (−8)$$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom