Matematyka

Matematyka z kluczem 4. Podręcznik cz. 1 (Podręcznik, Nowa Era )

Jakie liczby są ukryte pod literami na osi ( pisz tak: A=9, B= 12 itd.)? 4.62 gwiazdek na podstawie 13 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Jakie liczby są ukryte pod literami na osi ( pisz tak: A=9, B= 12 itd.)?

1
 Zadanie

poziom A

Na osi poruszamy się co jedną jednostkę. 

a)

A = 3

B = 6

C = 9
 

b)

A = 4

B = 5

C = 8
 

c)

A = 7

B = 8

C = 9
 

d)

A = 2

B = 6

C = 9

 

poziom B

Odcinek między 0 a 4 ma długość 4. Został on podzielony na 4 równe części. Długość każdej z części wynosi 1 [4 (długość odcinka) : 4 (ilość części) = 1 (jednostka)]. Analogicznie mamy w pozostałych przykładach. 

a)

A = 2

B = 7

C = 9
 

b)

A = 2

B = 4

C = 7
 

c)

A = 1

B = 7

C = 10
 

d)

A = 5

B = 6

C = 8

 

poziom C 

W przykładzie a) na osi poruszamy się co 4, czyli jedna jednostka to odległość równa 4.
W przykładzie b) na osi poruszamy się co 300, itd.

a)

A = 12

B = 28

C = 32

b)

A = 1500

B = 1800

C = 2700

c)

A = 200

B = 300

C = 450

d)

A = 300

B = 800

C = 900

 

poziom D 

W przykładzie a) odcinek między 0 a 12 ma długość 12. Został on podzielony na 4 równe części. Każda z części odpowiada długości: 12:4=3. 
W analogiczny sposób odczytujemy jednostkę w pozostałych przykładach.

a)

A = 9

B = 24

C = 30

b)

A = 150

B = 200

C = 400

c)

A = 4

B = 28

C = 32

d)

A = 200

B = 1000

C = 1600

 

MISTRZ

W przykładzie a) odcinek między 15 a 27 ma długość 12 (27-15=12). Został on podzielony na 4 równe części. Każda z tych części ma długość: 12:4=3. 

Analogicznie odczytujemy jednostkę na pozostałych osiach. 

a)

A = 9

B = 24

C = 33

b)

A = 37

B = 58

C = 93

c)

A = 23

B = 32

C = 44

d)

A = 300

B = 480

C = 720

DYSKUSJA
user profile image
Gość

0

2017-09-16
zgadza sie
user profile image
Gość

0

2017-09-25
Dzieki za pomoc
user profile image
Gość

0

2017-09-27
dzieki :)
Informacje
Matematyka z kluczem 4. Podręcznik cz. 1
Autorzy: Marcin Braun, Agnieszka Mańkowska, Małgorzata Paszyńska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

1929

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Zamiana ułamka dziesiętnego na zwykły

Licznikiem ułamka zwykłego jest liczba naturalna jaką utworzyłyby cyfry ułamka dziesiętnego, gdyby nie było przecinka, mianownikiem jest liczba zbudowana z cyfry 1 i tylu zer, ile cyfr po przecinku zawiera ułamek dziesiętny.

Przykłady:

  • $$0,25 = {25}/{100}$$ ← licznikiem ułamka zwykłego jest liczba 25 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z dwóch zer, czyli liczba 100, ponieważ dwie cyfry stoją po przecinku,

  • $$4,305={4305}/{1000}$$ ← licznikiem ułamka zwykłego jest liczba 4305 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z trzech zer, czyli liczba 1000, ponieważ trzy cyfry stoją po przecinku.

Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zobacz także
Udostępnij zadanie