Krawędź boczna ostrosłupa prawidłowego sześciokątnego... - Zadanie 7: Matematyka na czasie! 3 - strona 113
Matematyka
Matematyka na czasie! 3 (Podręcznik, Nowa Era )
Krawędź boczna ostrosłupa prawidłowego sześciokątnego... 4.56 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Krawędź boczna ostrosłupa prawidłowego sześciokątnego...

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie

7
 Zadanie

8
 Zadanie
9
 Zadanie

Rysunek pomocniczy:

Ostrosłup ma  krawędzi podstawy i  krawędzi bocznych. Możemy więc zapisać, że

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy III gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
III gimnazjum
Informacje
Autorzy: Karolina Wej, Wojciech Babiański, Ewa Szmytkiewicz, Jerzy Janowicz
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326730023
Autor rozwiązania
user profile

Dagmara

13535

Nauczyciel

Wiedza
Objętość ostrosłupa

Objętość ostrosłupa liczy się bardzo podobnie jak objętość graniastosłupa.

Objętość ostrosłupa jest 3 razy mniejsza od objętości graniastosłupa o takiej samej podstawie i wysokości. 

objetoscostroslupa


`V=1/3P_p*H` 


`V\ \ ->`    objętość ostrosłupa

`P_p \ \ ->`    pole podstawy

`H \ \ ->`    długość wysokości

Objętość ostrosłupa

Wzór na objętość ostrosłupa:

$V=1/3 P_p×H$

Pole podstawy będzie zazwyczaj łatwe do policzenia, gorzej z wysokością, będziemy stosować metody o których wspominałem przy kącie nachylenia (trzeba znaleźć trójkąt, którego jednym z boków jest wysokość ostrosłupa).

Przykład:

Oblicz objętość ostrosłupa prawidłowego czworokątnego o krawędzi podstawy a=2√2 oraz krawędzi ściany nachylonej do podstawy pod kątem $60°$.

Rysunek:

img13
Teraz potrzebujemy połowy przekątnej kwadratu (podstawy):

Wzór na przekątną kwadratu o boku a to:

$a√2$

Zatem:

$a√2=2√2×√2=2×2=4$

Nasza przekątna ma długość 4, połowa to 2.

img14
Możemy teraz skorzystać z własności trójkąta w celu policzenia wysokości:

img15

Zatem nasza wysokość to:

$H=2√3$

A ostatecznie objętość:

$V=1/3 P_p×H=1/3 (2√2)^2×2√3=1/3×8×2√3={16√3}/3$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom