Matematyka

Trójkąt ABC, w którym... 4.0 gwiazdek na podstawie 9 opinii
  1. Liceum
  2. 3 Klasa
  3. Matematyka

Rysunek pomocniczy:

Zauważmy, że korzystając z funkcji trygonometrycznych otrzymujemy:

 

 

 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Barbara Wolnik
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326720505
Autor rozwiązania
user profile

Magda

6206

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Graniastosłupy proste

Graniastosłup to figura przestrzenna (wielościan), której dwie ściany zwane podstawami są równoległymi wielokątami przystającymi, natomiast ściany boczne są równoległobokami. Rozróżniamy graniastosłupy proste i pochyłe.

Graniastosłup prosty to figura zbudowana z dwóch jednakowych równoległych do siebie podstaw, połączonych ścianami bocznymi, które są prostopadłe do podstaw. Prostopadłościan to graniastosłup prosty mający w podstawie prostokąt. Sześcian to graniastosłup prosty mający w podstawie kwadrat. Każda ściana boczna graniastosłupa prostego jest prostokątem. Krawędzie boczne graniastosłupa prostego mają jednakową długość.

Z dowolnego wierzchołka graniastosłupa prostego wychodzą trzy krawędzie. Jedna z nich jest krawędzią boczną, a pozostałe krawędziami podstawy. Krawędź boczna jest prostopadła do każdej z tych dwóch krawędzi podstawy.

Graniastosłupy proste

Graniastosłup, który ma w podstawie trójkąt to graniastosłup trójkątny. Gdy ma w podstawie czworokąt to jest to graniastosłup czworokątny itd. Graniastosłup przyjmuje swoją nazwę od wielokąta, który jest jego podstawą.

Przykład:

  • Graniastosłup dziesięciokątny

    Graniastosłup dziesięciokątny
     

Wysokość graniastosłupa – to odcinek łączący podstawy graniastosłupa i prostopadły do każdej z nich. W przypadku graniastosłupa prostego wysokością jest po prostu krawędź boczna. Wysokość graniastosłupa oznaczamy literą H.

wysokosc-graniastoslupa
 
Objętość graniastosłupa

Objętość („V”) prostopadłościanu oblicza się ze wzoru $$ V=a×b×H $$.

objetoscgraniastoslupa
a,b -> krawędzie podstawy
H -> wysokość (krawędź boczna)

Z powyższego wzoru na objętość prostopadłościanu łatwo możemy wywnioskować ogólny wzór na objętość dowolnego graniastosłupa.

Wzór na objętość dowolnego graniastosłupa to $$ V=P_{podstawy}×H $$.

 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom