Matematyka

Podkreśl te liczby, które ... 4.45 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Porównajmy każdą liczbę z liczbą 35/8.

Przypomnijmy:

Z dwóch ułamków o takich samych mianownikach ten jest większy, który ma większy licznik.

Z dwóch ułamków o takich samych licznikach ten jest wiekszy, który ma mniejszy mianownik.

 

`3 1/8<3 5/8`   - części całkowite są takie same, więc porównujemy części ułamkowe (ułamki mają takie same mianowniki)

`ul(\ \ \ \ \ \ \ \ \ )` 

`3 5/7 >3 5/8`   - części całkowite są takie same, porównujemy części ułamkowe (ułamki mają taki sam licznik)

`ul(\ \ \ \ \ \ \ \ \ )`

`30/8>3 5/8` 

Zapiszmy ułamek niewłasciwy w postaci liczby mieszanej.

`30/8=3 6/8` 

(Dzielimy 30:8=3 r 6. Stąd 3 jest całością, resztę zapisujemy w liczniku, a mianownik pozostawiamy bez zmian).

`3 6/8>3 5/8 `  - części całkowite są takie same, porónujemy części ułamkowe (ułamki mają taki sam mianownik)

`ul(\ \ \ \ \ \ \ \ \ )`

`2 7/8< 3 5/8` 

`ul(\ \ \ \ \ \ \ \ \ )` 

`3 5/9<3 5/8`  - części całkowite są takie same, porównujemy części ułamkowe (ułamki mają taki sam licznik)

`ul(\ \ \ \ \ \ \ \ \ )` 

`4 5/8>3 5/8` 

`ul(\ \ \ \ \ \ \ \ \ )` 

`3 7/8>3 5/8`  - części całkowite są takie same, porównujemy części ułamkowe (ułamki mają taki sam mianownik)

 

 

Podkreślamy liczby większe od 3 5/8, czyli:

`3 5/7,\ \ 30/8,\ \ 4 5/8,\ \ 3 7/8`  

DYSKUSJA
Informacje
Matematyka z plusem 5. Arytmetyka. Wersja B
Autorzy: Zofia Bolałek, Adam Mysior, Małgorzata Dobrowolska, Stanisław Wojtan
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Cechy podzielności liczb

Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb. Sprowadzają one rozwiązanie problemu podzielności liczb do prostych działań na niewielkich liczbach.

  1. Podzielność liczby przez 2

    Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.

    Przykład:

    • 1896319128 → liczba jest podzielna przez 2, ponieważ ostatnią cyfrą jest 8.
       
  2. Podzielność liczby przez 3

    Liczba jest podzielna przez 3, gdy suma jej cyfr dzieli się przez 3.

    Przykład:

    • 7981272 → liczba jest podzielna przez 3, ponieważ suma jej cyfr (7+9+8+1+2+7+2=36) dzieli się przez 3.
       
  3. Podzielność liczby przez 4

    Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

    Przykład:

    • 21470092816 → liczba jest podzielna przez 4, ponieważ jej dwie ostatnie cyfry tworzą liczbę 16, a liczba 16 jest podzielna przez 4.
       
  4. Podzielność liczby przez 5

    Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.

    Przykład:

    • 182947218415 → liczba jest podzielna przez 5, ponieważ jej ostatnią cyfrą jest 5.
       
  5. Podzielność liczby przez 6

    Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.

    Przykład:

    • 1248 → liczba jest podzielna przez 6, ponieważ dzieli się przez 2 (jej ostatnią cyfrą jest 8), a także dzieli się przez 3 (suma jej cyfr 1+2+4+8=15 jest liczbą podzielną przez 3).
       
  6. Podzielność liczby przez 9

    Liczba jest podzielna przez 9 , gdy suma jej cyfr jest podzielna przez 9.

    Przykład:

    • 1890351 -> liczba jest podzielna przez 9, ponieważ suma jej cyfr (1+8+9+0+3+5+1=27) jest podzielna przez 9.
       
  7. Podzielność liczby przez 10

    Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.

    Przykład:

    • 1920481290 → liczba jest podzielna przez 10, ponieważ jej ostatnią cyfrą jest 0.
       
  8. Podzielność liczby przez 25

    Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.

    Przykład:

    • 4675 → liczba podzielna przez 25, ponieważ jej dwie ostatnie cyfry tworzą liczbę 75, a 75 jest podzielne przez 25
       
  9. Podzielność liczby przez 100

    Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.

    Przykład:

    • 12491848100 → liczba jest podzielna przez 100, ponieważ jej dwie ostatnie cyfry to zera.
Proste, odcinki i kąty

Najprostszymi figurami geometrycznymi są: punkt, prosta, półprosta i odcinek.

  1. Punkt – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić go sobie jako nieskończenie małą kropkę lub ślad po wbitej cienkiej szpilce. Punkty oznaczamy wielkimi literami alfabetu.

    punkt
     
  2. Prosta – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić ją sobie jako niezwykle długą i cienką, naprężona nić lub ślad zgięcia wielkiej kartki papieru.

    Możemy też powiedzieć, że prosta jest figurą geometryczną złożoną z nieskończenie wielu punktów. Prosta jest nieograniczona, czyli nie ma ani początku ani końca. Proste oznaczamy małymi literami alfabetu.
     

    prosta

    Jeżeli punkt A należy do prostej a, to mówimy, że prosta a przechodzi przez punkt A.

    prosta-punkty

    $$A∈a$$ (czyt.: punkt A należy do prostej a); $$B∈a$$; $$C∉a$$ (czyt.: punkt C nie należy do prostej a); $$D∉a$$

    Przez jeden punkt można poprowadzić nieskończenie wiele prostych.

    prosta-przechodzaca-przez-punkty

    Przez dwa różne punkty A i B można poprowadzić tylko jedną prostą. Prostą przechodzącą przez dwa różne punkty A i B oznaczamy prostą AB.
     
  3. Półprosta – jedna z dwóch części prostej, na które punkt dzieli tę prostą, wraz z tym punktem. Inaczej mówiąc półprosta to część prostej ograniczona z jednej strony punktem, który jest jej początkiem.
     

    polprosta
     
  4. Odcinek – Jeżeli dane są dwa różne punkty A i B należące do prostej, to zbiór złożony z punktów A i B oraz z tych punktów prostej AB, które są zawarte między punktami A i B, nazywamy odcinkiem AB.


    odcinekab

    Punkty A i B nazywamy nazywamy końcami odcinka. Końce odcinków oznaczamy wielkimi literami alfabetu,natomiast odcinek możemy oznaczać małymi literami.
     
  5. Łamana – jest to figura geometryczna, będąca sumą skończonej liczby odcinków. Inaczej mówiąc, łamana to figura zbudowana z odcinków w taki sposób, że koniec jednego odcinka jest początkiem następnego odcinka.


    lamana
     

    Odcinki, z których składa się łamana nazywamy bokami łamanej, a ich końce wierzchołkami łamanej.
     

    • Jeśli pierwszy wierzchołek łamanej pokrywa się z ostatnim, to łamaną nazywamy zamkniętą.

      lamana-zamknieta
       
    • Jeśli pierwszy wierzchołek nie pokrywa się z ostatnim, to łamana nazywamy otwartą.

      lamana-otwarta
 
Zobacz także
Udostępnij zadanie