Matematyka

Matematyka z kluczem 5 (Zeszyt ćwiczeń, Nowa Era)

Zamaluj na żółto: 1/3 figury, (...) 4.56 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Zamaluj na żółto: 1/3 figury, (...)

2
 Zadanie

3
 Zadanie
4
 Zadanie

`1/3 " figury"` 

`1/6 " figury jest zakreskowana"` 

`1/3:2=1/3*1/2=1/6` 

 

`1/4 " figury"` 

`1/8 " figury jest zakreskowana"` 

`1/4:2=1/4*1/2=1/8` 

 

`1/5 "figury"` 

`1/10 " figury jest zakreskowana"` 

`1/5:2=1/5*1/2=1/10`

DYSKUSJA
user profile image
Gość

4 stycznia 2018
dziękuje
user profile image
Gość

4 stycznia 2018
thx
:D
user profile image
Gość

4 stycznia 2018
Dzięki
user profile image
Gość

21 grudnia 2017
Dziękuję :)
user profile image
Gość

8 grudnia 2017
Dziękuję
Informacje
Matematyka z kluczem 5
Autorzy: Marcin Braun, Agnieszka Mańkowska, Małgorzata Paszyńska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paweł

12916

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 1,57+7,6=?$$
    dodawanie-ulamkow-1 

    $$1,57+7,6=8,17 $$

Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $$(3 • 5) • 2 = 3 • (5 • 2)$$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $$a = b • c$$, np. $$12÷3 = 4$$, bo $$12 = 3 • 4$$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Zobacz także
Udostępnij zadanie