Matematyka

Pan Kowalski ma 180 m^2 trawnika. Czy siedem ... 4.55 gwiazdek na podstawie 11 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Pan Kowalski ma 180 m^2 trawnika. Czy siedem ...

7
 Zadanie

8
 Zadanie
9
 Zadanie
10
 Zadanie
Super zagadka
 Zadanie

1 kg nawozu wystarcza na użyźnienie 10 m2 trawnika.

2 1/- kilogramowe opakowanie wystarczy więc na użyźnienie 2 1/2 razy większej powierzchni trawnika, a 7 takich opakowań pozwoli użyźnić jeszcze

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do rozwiązania Pan Kowalski ma 180 m^2 trawnika. Czy siedem ... - Zadanie 7: Matematyka z plusem 5 - strona 90
Wioletta

28 listopada 2017
dzięki!!!!
klasa:
Informacje
Autorzy: Małgorzata Dobrowolska, Marcin Karpiński, Marta Jucewicz, Piotr Zarzycki
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788381181112
Autor rozwiązania
user profile

Monika

25200

Nauczyciel

Wiedza
Mnożenie i dzielenie ułamków

Mnożenie i dzielenie to po dodawaniu i odejmowaniu najbardziej popularne działania stosowane we wszystkich dziedzinach nauki.


Mnożenie i dzielenie ułamków zwykłych

Aby pomnożyć dwa ułamki zwykłe należy obliczyć iloczyn ich liczników oraz mianowników. 

Aby podzielić dwa ułamki zwykłe należy dzielną pomnożyć razy odwrotność dzielnika.  

Przykłady:

  • `4/5*3/7=(4*3)/(5*7)=12/35` 

  • `1 2/5*4/9=7/5*4/9=28/45` 

  •  `4/7:5/8=4/7*8/5=32/35` 

  • `2 4/5: 3/7=14/5:3/7=14/5*7/3=98/15=6 8/15`     


Mnożenie i dzielenie ułamków dziesiętnych 

Aby pomnożyć dwa ułamki dziesiętne chwilowo pomijamy przecinki i wykonujemy działanie na liczbach naturalnych.

Następnie obliczamy ile łącznie cyfr znajduje się po przecinku w obu czynnikach. Tyle samo cyfr musi znaleźć się po przecinku w otrzymanym wyniku. 

Aby podzielić dwa ułamki dziesiętne należy w dzielnej i dzielniku przesunąć przecinek o tyle miejsc w prawo, aby dzielnik był liczbą naturalną. 

Przykłady:

  • `3,4*1,21=4,114` 

  • `5,7*1,42=8,094`  

  • `3,2:0,8=32:8=4`  

  • `3,55:0,5=35,5:5=7,1`  
Mnożenie i dzielenie ułamków zwykłych

W przypadku mnożenia ułamków, sprawa prosta. Mnożymy:
Licznik razy Licznik i Mianownik razy Mianownik

Przykład:

$$1/5×3/2=3/{10}$$

W przypadku dzielenia w drugim z ułamków należy zamienić licznik z mianownikiem i wtedy pomnożyć oba ułamki.

Przykład:

$$-{4}/{3}÷{2}/{5}=-4/3×5/2=-{20}/6$$

Nie możemy mnożyć i dzielić ze sobą ułamków mieszanych. Najpierw musimy je zamienić na niewłaściwe.

Przykład:

$$3 {1}/{5}×2 {1}/{4}={16}/{5}×9/4={144}/{20}={72}/{10}={36}/{5}=7{1}/{5}$$

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom