Matematyka

Podaj odpowiedzi w postaci ułamków zwykłych lub 4.11 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Podaj odpowiedzi w postaci ułamków zwykłych lub

7
 Zadanie

8
 Zadanie
9
 Zadanie
10
 Zadanie
11
 Zadanie
Super zagadka
 Zadanie

`a) \ \ 7 \ "mm"=7/10 \ "cm"`

` 2 \ "cm" \ 9 \ "mm"=2 9/10 \ "cm"`

`b) \ \ 27 \ "dag"=27/100 \ "kg"`

`2 \ "kg" \ 5 \ "dag"=2 5/100 \ "kg"`

`c) \ \ 4 \ "doby"= 4/7 \ "tygodnia"`

`3 \ "tygodnie i 4 doby"= 3 4/7 \ "tygodnia"`

`d) \ \ 29 \ "min"=29/60 \ "godziny"`

`3 \ "godziny" \ 7 \ "minut"= 3 7/60 \ "godziny"`

DYSKUSJA
Informacje
Nowa Matematyka z plusem 5
Autorzy: Małgorzata Dobrowolska, Marcin Karpiński, Marta Jucewicz, Piotr Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Monika

3600

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $$(3 • 5) • 2 = 3 • (5 • 2)$$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $$a = b • c$$, np. $$12÷3 = 4$$, bo $$12 = 3 • 4$$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Zobacz także
Udostępnij zadanie