Matematyka

Nowa Matematyka z plusem 5 (Podręcznik, GWO)

Spośród lat zapisanych poniżej wypisz wszystkie oznaczone 4.29 gwiazdek na podstawie 17 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Spośród lat zapisanych poniżej wypisz wszystkie oznaczone

9
 Zadanie
10
 Zadanie

11
 Zadanie

 Wypisujemy liczby podzielne przez 4:

`1804, \ 1808, \ 1892, \ 1896, \ 1900, \ 1904, \ 1908, \ 1992, \ 1996, \ 2000, \ 2004, \ 2008`

Skreślamy następującą liczbę: podzielna przez 4 i przez 100, ale niepodzielna przez 400.

`1804, \ 1808, \ 1892, \ 1896, \ strike1900, \ 1904, \ 1908, \ 1992, \ 1996, \ 2000, \ 2004, \ 2008`

Lata przestępne:

`1804, \ 1808, \ 1892, \ 1896, \  1904, \ 1908, \ 1992, \ 1996, \ 2000, \ 2004, \ 2008`

DYSKUSJA
user profile image
Gość

26 października 2017
Dzięki
user profile image
Gość

24 października 2017
dzieki
Informacje
Nowa Matematyka z plusem 5
Autorzy: Małgorzata Dobrowolska, Marcin Karpiński, Marta Jucewicz, Piotr Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Monika

10310

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Kolejność wykonywania działań

Przy rozwiązywaniu bardziej skomplikowanego działania, najważniejsze jest zachowanie kolejności wykonywania działań.

Kolejność wykonywania działań:

  1. Wykonywanie działań w nawiasach;

  2. Potęgowanie i pierwiastkowanie;

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje dzielenie lub zarówno mnożenie, jak i dzielenie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej do prawej strony).
    Przykład: $$16÷2•5=8•5=40$$;

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje odejmowanie lub zarówno dodawanie, jak i odejmowanie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej strony do prawej).
    Przykład: $$24 - 6 +2 = 18 + 2 = 20$$.

Przykład:

$$(45-9•3)-4=(45-27)-4=18-4=14 $$
 
Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Zobacz także
Udostępnij zadanie