Matematyka

Obwód prostokąta jest nie większy niż 60 cm. 4.33 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Obwód prostokąta jest nie większy niż 60 cm.

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie

Obwód prostokąta jest nie większy, czyli mniejszy lub równy 60 cm. 

Dłuższy bok prostokąta ma długość 20 cm. 

Oznaczmy przez x długość krótszego boku. 

Obwód prostokąta można przedstawić nierównością:
 

Obliczmy teraz z nierówności ile może wynosić x. 
  
Odejmujemy obustronnie 40. 
 
Obustronnie dzielimy przez 2. 
 
Krótszy bok może mieć długość mniejszą lub równą 10 cm. 

Sprawdzamy teraz prawdziwość zdań. 

I. Zdanie fałszywe, podkreślić należy: NIE
Krótszy bok nie może być dłuższy niż 10 cm. Jego długość może wynosić maksymalnie 10 cm. 

II. Zdanie prawdziwe, podkreślić należy: TAK
Krótszy bok może mieć 10 cm. 

III. Zdanie prawdziwe, podkreślić należy: TAK
Krótszy bok może mieć 1 cm. Ma on być krótszy od 10 cm lub równy 10 cm. A 1cm to mniej niż 10 cm.

IV. Zdanie prawdziwe, podkreślić należy: TAK
Krótszy bok może mieć maksymalnie 10 cm. 

V. Zdanie fałszywe, podkreślić należy: NIE
Krótszy bok nie może być dłuższy niż 10 cm i krótszy niż 20 cm. Jego długość może wynosić maksymalnie 10 cm. 

DYSKUSJA
klasa:
Informacje
Autorzy: Praca zbiorowa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Dzielenie z resztą

Dzielenie z resztą to takie dzielenie, w którym otrzymujemy pewien iloraz oraz resztę. 


Sposób wykonywania dzielenia z resztą:

  1. Podzielmy liczbę 23 przez 3.

  2. Wynikiem dzielenia nie jest liczba całkowita (pewna część nam pozostanie). Maksymalna liczba 3, które zmieszczą się w 23 to 7.

  3. `7*3=21` 

  4. Różnica między liczbami 23 i 21 wynosi `23-21=2` , zatem resztą z tego dzielenia jest liczba 2.

  5. Poprawny zapis działania: `23:3=7 \ "r" \ 2` $$r.2$$


Przykłady:

  • `5:2=2 \ "r" \ 1` 
    Sprawdzenie:  `2*2+1=4+1=5` 

  • `27:9=3 \ "r" \ 0` 
    Sprawdzenie:  `3*9+0=27+0=27` 

  • `53:5=10 \ "r" \ 3` 
    Sprawdzenie: `10*5+3=50+3=53` 

  • `102:20=5 \ "r" \ 2` 
    Sprawdzenie:  `5*20+2=100+2=102` 


Zapamiętaj!!!

Reszta jest zawsze mniejsza od dzielnika.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom