Matematyka

Matematyka 2001 (Podręcznik, WSiP)

Pięć rund. 4.31 gwiazdek na podstawie 13 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

1.

  • Jakie największe liczby mogą utworzyć gracze ze swoich cyfr?

Jurek 753

Ania 864

Ela 701 

Tomek 952

 

  • Tomek zdobędzie 1 punkt w pierwszej rundzie

 

  • Ela zdobędzie 1 punkt za najmniejszą liczbę

 

  • Ela powinna ułożyć liczbę 107

2.

  • W trzeciej rundzie zwycieży Ania liczbą 486

3.

  • W rundzie 4 Ania nie ułoży liczby nieparzystej, ponieważ wszystkie cyfry sa parzyste

4. 

W pierwszej rundzie wygrywa Tomek ( 952) 

W drugiej rundzie wygrywa Ela ( 107) 

W trzeciej rundzie wygrywa Ania ( 486)

W czwartej rundzie wygrywa Tomek ( 925 ) 

W piątej rundzie wygrywa Ania ( 468 ) 

 

Jurek 0 punktów

Ania 2 punkty

Ela 1 punkt 

Tomek 2 punkty 

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: Jerzy Chodnicki, Mirosław Dąbrowski, Agnieszka Pfeiffer
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Obwód

Obwód wielokąta to suma długości boków danego wielokąta.

  1. Obwód prostokąta – dodajemy długości dwóch dłuższych boków i dwóch krótszych.

    Zatem prostokąt o wymiarach a i b ma obwód równy:
    Obwód prostokąta: $$Ob = 2•a+ 2•b$$.

    Przykład: Policzmy obwód prostokąta, którego boki mają długości 6 cm i 8 cm.

    ob_kwadrat

    $$Ob=2•8cm+2•6cm=16cm+12cm=28cm$$
     

  2. Obwód kwadratu – dodajemy długości czterech identycznych boków, zatem wystarczy pomnożyć długość boku przez cztery.

    Zatem kwadrat o boku długości a ma obwód równy:
    Obwód kwadratu: $$Ob = 4•a$$.

    Przykład: Policzmy obwód kwadratu o boku długości 12 cm.

    ob_prostokat

    $$Ob=4•12cm=48cm$$

 
Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Zobacz także
Udostępnij zadanie