Matematyka

Pierwszy wyraz ciągu geometrycznego jest równy... 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

Pierwszy wyraz ciągu geometrycznego jest równy...

14
 Zadanie

15
 Zadanie

16
 Zadanie
17
 Zadanie
18
 Zadanie
19
 Zadanie
1
 Zadanie
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Wojciech Babiański, Lech Chańko
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326715082
Autor rozwiązania
user profile

Ernest

1024

Nauczyciel

Wiedza
Ciąg geometryczny i jego suma
Temat ten jest bardzo podobny do obliczania sumy ciągu arytmetycznego, lecz w przypadku ciągu geometrycznego musi wykonać więcej obliczeń.

Jak pamiętamy ciąg to ponumerowane liczby. Dodatkowy wiemy, że ciąg geometryczny to taki gdzie iloraz pomiędzy kolejnymi wyrazami jest zawsze taki sam.

Mamy przykładowy ciąg:

$$a_n=2,4,8,16,32,x$$

Gołym okiem widać, że ciągle jest mnożony przez 2, zatem nasz x będzie wynosić 64, bo $$32*2=64$$

Jednak i tu nie jest tak łatwo jeśli mamy ciąg takiej postaci:

$$a_n=1/3,-1/5,3/{2}5,-9/{25},x$$

Przykład:

Znajdź $$x$$ w ciągu $$a_n=1/3,-1/5,3/{2}5,-9/{25},x$$. Musimy najpierw znaleźć jaki iloraz został tutaj użyty, zatem wprowadźmy wzór na dowolny wyraz ciągu geometrycznego:

$$a_n=a_1×q^(n-1)$$

Podstawmy tu wyraz numer 2:

Czyli $$n=2$$

$$a_2=a_1×q^(2-1)$$

Nasze wyrazy to:

$$a_1=1/3$$

$$a_2=-1/5$$

Podstawiamy do wzoru:

$$a_2=a_1×q^1$$

W celu usunięcia ułamków

$$-1/5=1/3×q$$ $$|×15$$

$$-3=5×q$$ $$|:(-3)$$

$$q=-5/3$$


Obliczmy teraz bez problemu wyraz numer 5:

$$a_5=a_1×q^(5-1)$$

$$a_5=a_1×q^4$$

$$a_5=1/3×(-5/3)^4$$

$$a_5=1/3×-{625}/{81}=-{625}/{243}$$


Ciąg geometryczny ma również własność wyrazu środkowego - kwadrat wyrazu środkowego jest równy iloczynowi wartości sąsiednich wyrazów, czyli:

$$a_{n-1}$$, $$a_n$$, $$a_{n+1}$$ -> trzy kolejne wyrazy

$$a_n^2=a_{n-1}×a_{n+1}$$

 

Suma ciągu geometrycznego


W celu obliczenia sumy ciągu geometrycznego potrzebujemy następujących danych:
  • Pierwszy wyraz: $$a_1$$
  • Ilość wyrazów, których sumę liczymy: $$N$$
  • Iloraz: $$q$$

Wzór na sumę wygląda następująco:

$$S_N={a_1(1-q^N)}/{1-q}$$

Przykład:

Oblicz sumę pierwszych 7 wyrazów ciągu geometrycznego, gdzie ostatni wyraz to $$a_7=81$$, a iloraz to $$q=3$$.

Potrzebujemy podstawy, zatem obliczmy $$a_1$$ z wzoru na dowolny wyraz:

$$a_N=a_1×q^{N-1}$$

$$a_7=a_1×q^6$$

Podstawmy: $$81=a_1×3^6$$

81 również jest potęgą trójki, więc zamiast bawić się w duże liczby zróbmy tak:

$$3^4=a_1×3^6$$ $$|:3^6$$

Z własności dzielenia potęg:

$$3^{-2}=a_1$$

$$1/9=a_1$$

Wiemy, że N=7, bo 7 wyrazów, więc liczymy sumę:

$$S_N={a_1 (1-q^N)}/{1-q}$$

$$S_7={1/9(1-3^7)}/{1-3}$$

$$S_7={1/9(1-3^7)}/{1-3}$$

$$S_7={1/9(-2186)}/{-2}$$

$$S_7={-{2186}/9}/{-2}$$

$$S_7={2186}/{18}$$
 

Uwaga!

Powyższe wzory są zawarte w karcie wzorów.

Wzór na dowolny wyraz jest uniwersalny, działa dla każdego ciągu geometrycznego.
 
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom